Safety Precautions

Thank you for purchasing Shihlin Electric product. This user manual introduces how to install, wiring, inspect and operate Shihlin Servo Drive and Motor. Pay special attention to the safety precautions all the time for the correct and safe use of our product.

■ In this manual, safety precautions are categorized as "DANGER" and "CAUTION".

May cause severe or fatal injuries to personnel if the instructions are not followed.

May cause moderate injury to personnel, or lead to severe damage or even malfunction of the product if the instructions are not followed.

Sometimes, the CAUTION items may cause serious consequences. It is important to observe both.

■ The matters to be complied with are illustrated by the following graphic symbols.

This symbol indicates the PROHIBITED items.

This symbol Indicates the MANDATORY Items.

In this user manual, NOTE indicates the precautions which may not cause damage to the property or malfunction of the product.

Please read this manual carefully and keep it properly to make sure you can reach it in any time.

Safety Instruction

1. Electric Shock Prevention

Do NOT place the servo drive, motor, or external regenerative resistor on or nearby inflammable objects, otherwise, fire disaster may be caused.

In case of servo drive failure, disconnect the power supply on the servo drive side to avoid fire caused by high current flow.

Turn off the power with a regenerative abnormal signal when regenerative resistor is used. Failure of the regenerative transistor may cause overheat and fire disaster.

Never let below items go inside of the servo drive or motor. Including: flammable matter, such as oil, fat, etc. And conductive matter: such as screw, metal parts, etc.

Be sure to connect a non-fuse circuit breaker to the power supply of the servo drive.

3. Injury Prevention

Only specified voltage can be applied to each terminal, otherwise, a crack or damage may occur.

 \bigcirc Do NOT mistake the terminal connections as this may cause crack or damage.

♦ ODo NOT mistake the positive and negative polarity (+ -), as it may cause crack or damage.

ODO NOT touch the heat sink, regenerative resistor of the servo drive, servo motor and other components during power-on or after power-off, because it may get hot and cause injury.

4. Other cautions

Please pay full attention to below precautions, improper operation may cause malfunction, injury, electric shock, etc.

(1) Delivery & Installation

Please move the product in the correct way according to its weight.

 \bigcirc Do NOT stack more than the limit.

When moving a servo motor, hold the whole motor instead of holding the cable or only the

motor shaft and encoder.

Servo drive and motor must be installed in the location that can support their weight according to the instructions.

 \bigcirc Do NOT stand or put heavy staff on the product.

Be sure to observe the correct installation method.

Leave the required distance for servo drive inside of the protective cabinet, or between other equipment.

 \bigcirc Do NOT install or operate a servo drive or servo motor that is damaged or missing parts.

ODo NOT block the vent of servo drive. Otherwise, it may cause a malfunction.

ODO NOT drop and strong shock as servo drives and servo motors, they are precision machines.

When storing for a long period of time, please consult with Shihlin Electric Systems service personnel.

(2) Wiring

Make sure that the wiring is done correctly and carefully. Incorrect wiring may cause error on servo motor.

ODo NOT install in-phase capacitors, surge absorbs, or EMI noise filters on the output side of the servo drive.

Connect the servo drive and motor correctly(terminal U,V,W). Incorrect connection may cause malfunction of servo motor.

♦ Connect the servo drive output(terminal U,V,W)and servo motor input(terminal U,V,W) directly. Do NOT connect them by electromagnetic contactor, otherwise, it may cause error or malfunction.

ODo NOT put the diode which control the output signal in wrong direction. Otherwise, it may cause malfunction: the signal cannot be output and the protection circuit is disabled.

Be sure to tighten the cable to the terminal block with the specified torque, otherwise the cable and the terminal block may get hot due to poor contact.

(3) Trial run and adjustment.

Check and adjust the program and parameters before operation. Unexpected movements may occur due to mechanical reasons.

Abrupt adjustments and parameter changes may cause unstable movements, be sure to avoid them.

(4) Operation

Set an emergency stop circuit outside the drive, to turn off the power supply in urgent cases.

ODo NOT disassemble, repair, or modify the equipment.

If the alarm is cleared, the motor may restart suddenly. Make sure that the operation signal is cleared before proceeding. Otherwise, an accident may occur.

QUse noise filter to minimize the influence of electromagnetic interference, otherwise, the electric device nearby might have electromagnetic interference.

 \bigcirc Do NOT burn or disassemble the servo drive, as toxic gases may be generated.

Densure to use the specified combination of servo drive and servo motor.

⊙The built-in electromagnetic brake is used to hold the motor shaft, not for normal braking operation.

(5) Maintenance and Inspection

DEnsure the power LED indicator is off during maintenance or inspection.

Only qualified electricians can install, wire, repair and maintain the servo drive and servo motor.

Do NOT disassemble the servo motor as this may cause electric shock or injury.

Do NOT connect or disconnect the drive and motor UVW wires when the drive is powered on.

♦ The built-in electromagnetic brake is designed to hold the motor shaft, do NOT use for normal braking operation.

Note: the content of this manual may be revised without prior notice. Please consult our distributors or download the latest version at <u>http://www.seec.com.tw/en/</u>

1.Product and Model Introduction	1
1.1 Overview	1
1.2 Product checklist	2
1.3 Product model name overview	3
1.3.1 Servo motor naming rule	3
1.3.2 Servo drive naming rule	5
1.3.3 Servo drive and motor	6
1.4 Description of servo drive interfaces	7
1.4.1 Models below 1kW	7
1.4.2 Models above 1.5kW-3kW	8
1.5 Servo drive operation mode introduction	8
1.6 Recommended specifications for circuit breakers and fuses	8
2.Installation	9
2.1 Precautions and storage	9
2.2 Installation environment	9
2.3 Installation direction and clearances	10
3.Wiring and Signal	.12
3.1 Connection of power supply and peripheral devices	.13
3.1.1 Peripheral devices wiring diagram - below 1KW	. 13
3.1.2 Peripheral devices wiring diagram - 1.5KW~3KW	.14
3.1.3 Description of drive connectors and terminals	. 14
3.1.4 Wiring for power supply	. 16
3.1.5 Specifications for the UVW connectors of the motor	. 17
3.1.6 Wire selection	. 18
3.2 CN1 I/O signal wiring and description	.19
3.2.1 CN1 terminal configuration diagrams	. 19
3.2.2 Description of CN1 terminal signals	.20
3.2.3 Wiring diagrams	. 30
3.2.4 DI and DO signals for manual set	. 32
3.3 Encoder/Linear scale signal wiring and description	.33
3.3.1 CN2 encoder signal wiring and description	. 33
3.3.2 Specifications for the encoder connectors	.34
3.4 CN3/CN3L communication port wiring and description	.36
3.5 CN4 USB communication port	. 38
3.6 CN5 battery socket for absolute encoder	. 39
3.7 CN6 Safe Torque Off (STO) connector description	40
3.8 Standard wiring instruction	41
3.8.1 Wiring diagram for EtherCAT control (CoE mode)	. 42
3.8.2 Wiring diagram for position control (Pr mode)	.43

3.8.3 Wiring diagram for speed control (S mode)	44
4.Panel Display and Operation	45
4.1 Panel description	45
4.2 Display procedure	46
4.3 Status display	47
4.4 One-touch tuning function	51
4.5 Alarm mode	52
4.6 Diagnosis mode	54
4.6.1 Indication of external I/O signals	55
4.6.2 DO forced output	56
4.6.3 JOG operation	58
4.6.4 Positioning test operation	60
4.6.5 Inertia estimation and tuning by communication software	61
4.7 Parameter mode	63
4.7.1 16 Bit parameter setting instruction	63
4.7.2 32 Bit parameter setting instruction	64
5.Running Operation	67
5.1 Checklist before running	67
5.2 Test without load	67
5.2.1 JOG test without load	68
5.2.2 Positioning test without load	70
5.3 Parameter setting and operation in speed mode	72
6.Tuning Procedure	74
6.1 Tuning method and type	74
6.2 One-touch tuning function	76
6.2.1 One-touch tuning procedure	77
6.2.2 One-touch tuning display conversion and operation steps	78
6.2.3 List of one-touch tuning error codes and troubleshooting methods	83
6.3 Auto-tuning mode	84
6.3.1 Auto-tuning function	84
6.3.2 Tuning in manual mode	88
6.3.3 Interpolation mode	90
7.Control Mode	91
7.1 Control mode selection	91
7.2 Speed control mode	92
7.2.1 Speed command selection	92
7.2.2 Smooth speed command	93
7.2.3 Torque limit of speed control mode	95
7.2.4 Gain adjustment of speed loop	96

7.2.6 Gain switching function 104 7.3 Position control mode 108 7.3.1 Internal position command (Pr command) 109 7.3.2 Smooth position command 110 7.3.3 Electronic gear ratio (E-Gear ratio) 112 7.3.4 Torque limit of position loop 113 7.3.5 Position loop gain 113 7.4.0 Dual mode 114 7.4.1 Position/speed dual mode 114 7.4.1 Dosition/speed dual mode 116 7.5.1 Selection of regenerative resistor 116 7.5.2 The use of electromagnetic braking 121 8.1 Parameters 123 8.2 List of parameters 125 8.3 Parameter descriptions 145 9.4 Communication interface and wiring 196 9.1 Communication protocol 199 9.1 Communication specifications 198 9.3 EtherCAT communication protocol 199 9.1.2 Nopen Mode 244 10.1 Operation steps 244 10.2.1 Operation steps 247 10.2.2 Related objects setting 247 10.2.3 List of related objects 248 10.4 Homing Mode	7.2.5 Resonance suppression unit	
7.3 Position control mode	7.2.6 Gain switching function	104
7.3.1 Internal position command (Pr command) 109 7.3.2 Smooth position command 110 7.3.3 Electronic gear ratio (E-Gear ratio) 112 7.3.4 Torque limit of position loop. 113 7.3.5 Position loop gain. 113 7.4 Dual mode. 114 7.4.1 Position/speed dual mode. 115 7.5 Other functions. 116 7.5.1 Selection of regenerative resistor. 116 7.5.2 The use of electromagnetic braking. 121 8.1 Parameters. 123 8.2 List of parameters. 123 8.3 Parameter descriptions. 145 9.4 Communication Function. 196 9.1 Communication specifications. 198 9.2 Communication protocol. 199 10.CANopen Mode. 244 10.1 Operation steps. 244 10.1 2 Related objects setting. 245 10.2.1 Operation steps. 247 10.2.2 Related objects setting. 247 10.2.3 List of related objects. 248 10.3 Cyclic Synchronous Position Mode. 249 10.3.1 Operation steps. 249 10.3.2 List of related objects	7.3 Position control mode	
7.3.2 Smooth position command. 110 7.3.3 Electronic gear ratio (E-Gear ratio) 112 7.3.4 Torque limit of position loop. 113 7.3.5 Position loop gain. 113 7.4.1 Position/speed dual mode. 114 7.4.1 Position/speed dual mode. 115 7.5 Other functions. 116 7.5.1 Selection of regenerative resistor. 116 7.5.2 The use of electromagnetic braking. 121 8.1 Parameters. 123 8.1 Parameter definitions. 123 8.2 List of parameters. 125 8.3 Parameter descriptions. 145 9.4 Communication Function. 196 9.1 Communication interface and wiring. 196 9.2 Communication specifications. 198 9.3 EtherCAT communication protocol. 199 10.2 ANopen Mode. 244 10.1 1 Operation steps. 244 10.2 1 Netrolon steps. 247 10.2 2 Related objects setting. 247 10.2 2 Related objects setting. 247 10.3 1 Operation steps. 249 10.3 1 Operation steps. 249 10.3 1 Operation steps. <td>7.3.1 Internal position command (Pr command)</td> <td>109</td>	7.3.1 Internal position command (Pr command)	109
7.3.3 Electronic gear ratio (E-Gear ratio) 112 7.3.4 Torque limit of position loop 113 7.3.5 Position loop gain 113 7.4 Dual mode 114 7.4.1 Position/speed dual mode 115 7.5 Other functions 116 7.5.1 Selection of regenerative resistor 116 7.5.2 The use of electromagnetic braking 121 8.Parameters 123 8.1 Parameter definitions 123 8.2 List of parameters 125 8.3 Parameter descriptions 145 9.Communication Function 196 9.1 Communication specifications 198 9.3 EtherCAT communication protocol 199 10.CANopen Mode 244 10.1 Position Mode 244 10.1.2 Related objects setting 245 10.1.3 List of related objects 246 10.2.1 Operation steps 247 10.2.2 Related objects setting 247 10.2.3 List of related objects 248	7.3.2 Smooth position command	
7.3.4 Torque limit of position loop 113 7.3.5 Position loop gain 113 7.4 Dual mode 114 7.4 Dual mode 115 7.5 Other functions 116 7.5.1 Selection of regenerative resistor 116 7.5.2 The use of electromagnetic braking 121 8.Parameters 123 8.1 Parameter definitions 123 8.2 List of parameters 125 8.3 Parameter descriptions 145 9.Communication Function 196 9.1 Communication function specifications 198 9.3 EtherCAT communication protocol 199 10.CANopen Mode 244 10.1 Profile Position Mode 244 10.1.2 Related objects setting 245 10.3.1 sit of related objects 246 10.2.1 Operation steps 247 10.2.2 Related objects 248 10.3 List of related objects 249 10.3.1 Uperation steps 247 10.2.2 Related objects 248 10.3 Operation steps 249 10.3.1 Operation steps 249 10.3.2 List of related objects	7.3.3 Electronic gear ratio (E-Gear ratio)	
7.3.5 Position loop gain 113 7.4 Dual mode 114 7.4.1 Position/speed dual mode 115 7.5 Other functions 116 7.5.1 Selection of regenerative resistor 116 7.5.2 The use of electromagnetic braking 121 8.Parameters 123 8.1 Parameter definitions 123 8.2 List of parameters 125 8.3 Parameter descriptions 145 9.Communication Function 196 9.1 Communication specifications 198 9.3 EtherCAT communication protocol 199 10.CANopen Mode 244 10.1 Profile Position Mode 244 10.2.1 Operation steps 244 10.2.2 Related objects setting 245 10.2.1 Operation steps 247 10.2.2 Related objects setting 247 10.2.3 List of related objects 248 10.3 Cyclic Synchronous Position Mode 249 10.3.1 Operation steps 249 10.3.2 List of related objects 250 10.4 Homing Mode 251 10.4.1 Operation steps 251 10.4.2 Homing objects	7.3.4 Torque limit of position loop	113
7.4 Dual mode. 114 7.4.1 Position/speed dual mode. 115 7.5 Other functions. 116 7.5.1 Selection of regenerative resistor. 116 7.5.2 The use of electromagnetic braking. 121 8.Parameters. 123 8.1 Parameters. 123 8.2 List of parameters. 123 8.3 Parameter descriptions. 145 9.Communication Function. 196 9.1 Communication specifications. 198 9.3 EtherCAT communication protocol. 199 10.CANopen Mode. 244 10.1 Porfile Position Mode. 244 10.1.2 Related objects setting. 245 10.1.3 List of related objects. 246 10.2.1 Operation steps. 247 10.2.2 Related objects setting. 247 10.2.3 List of related objects. 248 10.3.4 Uperation steps. 249 10.3.2 List of related objects. 250 10.4.4 Homing Mode. 251 10.4.2 Homing objects setting. 251 10.4.2 Homing method: 6098h. 252 10.4.4 Homing method: 6098h. 253 <	7.3.5 Position loop gain	113
7.4.1 Position/speed dual mode. 115 7.5 Other functions. 116 7.5.1 Selection of regenerative resistor. 116 7.5.2 The use of electromagnetic braking. 121 8.Parameters. 123 8.1 Parameter definitions. 123 8.2 List of parameters. 123 8.2 List of parameters. 125 8.3 Parameter descriptions. 145 9.Communication Function. 196 9.1 Communication specifications. 198 9.3 EtherCAT communication protocol. 199 10.CANopen Mode. 244 10.1 Operation steps. 244 10.1.1 Operation steps. 244 10.2.1 Operation steps. 244 10.2.1 Operation steps. 247 10.2.1 Operation steps. 247 10.2.2 Related objects setting. 247 10.2.3 List of related objects. 248 10.3 Cyclic Synchronous Position Mode. 249 10.3.1 Operation steps. 249 10.3.2 List of related objects. 250 10.4 Homing Mode. 251 10.4.2 Homing objects setting. 251	7.4 Dual mode	114
7.5 Other functions. 116 7.5.1 Selection of regenerative resistor. 116 7.5.2 The use of electromagnetic braking. 121 8.Parameters. 123 8.1 Parameter definitions. 123 8.2 List of parameters. 125 8.3 Parameter descriptions. 145 9.Communication Function. 196 9.1 Communication interface and wiring. 198 9.2 Communication specifications. 199 10.CANopen Mode. 244 10.1 Profile Position Mode. 244 10.1 Operation steps. 244 10.2 Related objects setting. 245 10.2.1 Operation steps. 247 10.2.2 Related objects setting. 247 10.2.3 List of related objects. 248 10.3 Cyclic Synchronous Position Mode. 247 10.3.1 Operation steps. 249 10.3.2 List of related objects. 248 10.4.1 Operation steps. 249 10.3.2 List of related objects. 250 10.4 Homing Mode. 251 10.4.2 Homing objects setting. 251 10.4.2 Homing objects setting. 251 <	7.4.1 Position/speed dual mode	115
7.5.1 Selection of regenerative resistor 116 7.5.2 The use of electromagnetic braking 121 8.Parameters 123 8.1 Parameter definitions 123 8.2 List of parameters 125 8.3 Parameter descriptions 145 9.Communication Function 196 9.1 Communication interface and wiring 196 9.2 Communication specifications 198 9.3 EtherCAT communication protocol 199 10.CANopen Mode 244 10.1 Profile Position Mode 244 10.1.1 Operation steps 244 10.2 Related objects setting 245 10.3 List of related objects 246 10.2.1 Operation steps 247 10.2.2 Related objects setting 247 10.2.3 List of related objects 248 10.3 Cyclic Synchronous Position Mode 249 10.3.1 Operation steps 249 10.3.2 List of related objects 250 10.4 Homing Mode 251 10.4.2 Homing objects setting 251 10.4.2 Homing objects setting 251 10.4.2 Homing objects setting 251 <td>7.5 Other functions</td> <td> 116</td>	7.5 Other functions	116
7.5.2 The use of electromagnetic braking. 121 8.Parameters 123 8.1 Parameter definitions. 123 8.2 List of parameters. 125 8.3 Parameter descriptions. 145 9.Communication Function. 196 9.1 Communication interface and wiring. 196 9.2 Communication specifications. 198 9.3 EtherCAT communication protocol 199 10.CANopen Mode. 244 10.1 Profile Position Mode. 244 10.1.1 Operation steps. 244 10.1.2 Related objects setting. 245 10.2.1 Related objects setting. 247 10.2.2 Related objects setting. 247 10.2.3 List of related objects. 248 10.3 Cyclic Synchronous Position Mode. 249 10.3.1 Operation steps. 249 10.3.2 List of related objects. 249 10.4.1 Operation steps. 249 10.4.2 Homing Mode. 251 10.4.4 Homing Mode. 251 10.4.2 Homing objects setting. 251 10.4.3 List of related objects. 251 10.4.4 Homing method: 6098h. 253	7.5.1 Selection of regenerative resistor	116
8.Parameters 123 8.1 Parameter definitions 123 8.2 List of parameters 125 8.3 Parameter descriptions 145 9.Communication Function 196 9.1 Communication interface and wiring 196 9.2 Communication specifications 198 9.3 EtherCAT communication protocol 199 10.CANopen Mode 244 10.1 Profile Position Mode 244 10.1.2 Related objects setting 245 10.1.3 List of related objects 246 10.2 Interpolation Position Mode 247 10.2.1 Operation steps 247 10.2.2 Related objects setting 247 10.2.3 List of related objects 248 10.3 Cyclic Synchronous Position Mode 249 10.3.1 Operation steps 249 10.3.2 List of related objects 250 10.4 Homing Mode 251 10.4.1 Operation steps 251 10.4.2 Homing objects setting 251 10.4.1 Operation steps 250 10.4 Homing Mode 251 10.4.2 Homing objects setting 251 10.4.3 List o	7.5.2 The use of electromagnetic braking	121
8.1 Parameter definitions 123 8.2 List of parameters 125 8.3 Parameter descriptions 145 9.Communication Function 196 9.1 Communication interface and wiring 196 9.2 Communication specifications 198 9.3 EtherCAT communication protocol 199 10.CANopen Mode 244 10.1 Profile Position Mode 244 10.1.1 Operation steps 244 10.1.2 Related objects setting 245 10.2.1 Nerpolation Position Mode 247 10.2.1 Operation steps 247 10.2.2 Related objects setting 247 10.2.3 List of related objects 248 10.3 Cyclic Synchronous Position Mode 249 10.3.1 Operation steps 249 10.3.2 List of related objects 250 10.4 Homing Mode 251 10.4.1 Operation steps 251 10.4.2 Homing objects setting 251 10.4.3 List of related objects 252 10.4.4 Homing method: 6098h 253 10.5 Profile Velocity Mode 260	8.Parameters	
8.2 List of parameters 125 8.3 Parameter descriptions 145 9.Communication Function 196 9.1 Communication interface and wiring 196 9.2 Communication specifications 198 9.3 EtherCAT communication protocol 199 10.CANopen Mode 244 10.1 Profile Position Mode 244 10.1.1 Operation steps 244 10.1.2 Related objects setting 245 10.1.3 List of related objects 246 10.2 Interpolation Position Mode 247 10.2.1 Operation steps 247 10.2.2 Related objects setting 247 10.2.3 List of related objects 248 10.3 Cyclic Synchronous Position Mode 249 10.3.1 Operation steps 249 10.3.2 List of related objects 250 10.4 Homing Mode 251 10.4.1 Operation steps 251 10.4.2 Homing objects setting 251 10.4.3 List of related objects 252 10.4.4 Homing method: 6098h 253 10.5 Profile Velocity Mode 260	8.1 Parameter definitions	
8.3 Parameter descriptions 145 9.Communication Function 196 9.1 Communication interface and wiring 196 9.2 Communication specifications 198 9.3 EtherCAT communication protocol 199 10.CANopen Mode 244 10.1 Profile Position Mode 244 10.1.1 Operation steps 244 10.1.2 Related objects setting 245 10.1.3 List of related objects 246 10.2 Interpolation Position Mode 247 10.2.1 Operation steps 247 10.2.2 Related objects setting 247 10.2.3 List of related objects 248 10.3 Cyclic Synchronous Position Mode 249 10.3.1 Operation steps 249 10.3.2 List of related objects 250 10.4 Homing Mode 251 10.4.1 Operation steps 251 10.4.2 Homing objects setting 251 10.4.3 List of related objects 252 10.4.4 Homing method: 6098h 253 10.5 Profile Velocity Mode 260	8.2 List of parameters	125
9.Communication Function 196 9.1 Communication interface and wiring 196 9.2 Communication specifications 198 9.3 EtherCAT communication protocol 199 10.CANopen Mode 244 10.1 Profile Position Mode 244 10.1.2 Related objects setting 245 10.2.1 Operation steps 246 10.2.1 Interpolation Position Mode 247 10.2.2 Related objects setting 247 10.2.3 List of related objects 248 10.3.1 Operation steps 249 10.3.1 Operation steps 249 10.3.2 List of related objects 249 10.3.1 Operation steps 249 10.3.2 List of related objects 250 10.4 Homing Mode 251 10.4.1 Operation steps 251 10.4.2 Homing objects setting 251 10.4.3 List of related objects 251 10.4.4 Homing method: 6098h 253 10.5 Profile Velocity Mode 260	8.3 Parameter descriptions	
9.1 Communication interface and wiring. 196 9.2 Communication specifications. 198 9.3 EtherCAT communication protocol. 199 10.CANopen Mode. 244 10.1 Profile Position Mode. 244 10.1.1 Operation steps. 244 10.1.2 Related objects setting. 245 10.1.3 List of related objects. 246 10.2 Interpolation Position Mode. 247 10.2.1 Operation steps. 247 10.2.2 Related objects setting. 247 10.2.3 List of related objects. 248 10.3 Cyclic Synchronous Position Mode. 249 10.3.1 Operation steps. 249 10.3.2 List of related objects. 250 10.4 Homing Mode. 251 10.4.1 Operation steps. 251 10.4.2 Homing objects setting. 251 10.4.3 List of related objects. 252 10.4.4 Homing method: 6098h. 253 10.5 Profile Velocity Mode. 260	9.Communication Function	
9.2 Communication specifications 198 9.3 EtherCAT communication protocol 199 10.CANopen Mode 244 10.1 Profile Position Mode 244 10.1.1 Operation steps 244 10.1.2 Related objects setting 245 10.1.3 List of related objects 246 10.2 Interpolation Position Mode 247 10.2.1 Operation steps 247 10.2.2 Related objects setting 247 10.2.3 List of related objects 248 10.3 Cyclic Synchronous Position Mode 249 10.3.1 Operation steps 249 10.3.2 List of related objects 250 10.4 Homing Mode 251 10.4.1 Operation steps 251 10.4.2 Homing objects setting 251 10.4.3 List of related objects 252 10.4.4 Homing method: 6098h 253 10.5 Profile Velocity Mode 260	9.1 Communication interface and wiring	196
9.3 EtherCAT communication protocol. 199 10.CANopen Mode. 244 10.1 Profile Position Mode. 244 10.1.1 Operation steps. 244 10.1.2 Related objects setting. 245 10.1.3 List of related objects. 246 10.2 Interpolation Position Mode. 247 10.2.1 Operation steps. 247 10.2.2 Related objects setting. 247 10.2.3 List of related objects. 248 10.3 Cyclic Synchronous Position Mode. 249 10.3.1 Operation steps. 249 10.3.2 List of related objects. 250 10.4 Homing Mode. 251 10.4.1 Operation steps. 251 10.4.2 Homing objects setting. 251 10.4.3 List of related objects. 251 10.4.4 Homing method: 6098h. 253 10.5 Profile Velocity Mode. 260	9.2 Communication specifications	
10.CANopen Mode 244 10.1 Profile Position Mode 244 10.1.1 Operation steps 244 10.1.2 Related objects setting 245 10.1.3 List of related objects 246 10.2 Interpolation Position Mode 247 10.2.1 Operation steps 247 10.2.2 Related objects setting 247 10.2.3 List of related objects 248 10.3 Cyclic Synchronous Position Mode 249 10.3.1 Operation steps 249 10.3.2 List of related objects 250 10.4 Homing Mode 251 10.4.2 Homing objects setting 251 10.4.3 List of related objects 252 10.4.4 Homing method: 6098h 253 10.5 Profile Velocity Mode 260	9.3 EtherCAT communication protocol	199
10.1 Profile Position Mode. 244 10.1.1 Operation steps. 244 10.1.2 Related objects setting. 245 10.1.3 List of related objects. 246 10.2 Interpolation Position Mode. 247 10.2.1 Operation steps. 247 10.2.2 Related objects setting. 247 10.2.3 List of related objects. 248 10.3 Cyclic Synchronous Position Mode. 249 10.3.1 Operation steps. 249 10.3.2 List of related objects. 250 10.4 Homing Mode. 251 10.4.1 Operation steps. 251 10.4.2 Homing objects setting. 251 10.4.3 List of related objects. 252 10.4.4 Homing method: 6098h. 253 10.5 Profile Velocity Mode. 260	10.CANopen Mode	244
10.1.1 Operation steps. 244 10.1.2 Related objects setting. 245 10.1.3 List of related objects. 246 10.2 Interpolation Position Mode. 247 10.2.1 Operation steps. 247 10.2.2 Related objects setting. 247 10.2.3 List of related objects. 248 10.3 Cyclic Synchronous Position Mode. 249 10.3.1 Operation steps. 249 10.3.2 List of related objects. 250 10.4 Homing Mode. 251 10.4.1 Operation steps. 251 10.4.2 Homing objects setting. 251 10.4.3 List of related objects. 252 10.4.4 Homing method: 6098h. 253 10.5 Profile Velocity Mode. 260	10.1 Profile Position Mode	
10.1.2 Related objects setting. 245 10.1.3 List of related objects. 246 10.2 Interpolation Position Mode. 247 10.2.1 Operation steps. 247 10.2.2 Related objects setting. 247 10.2.3 List of related objects. 248 10.3 Cyclic Synchronous Position Mode. 249 10.3.1 Operation steps. 249 10.3.2 List of related objects. 250 10.4 Homing Mode. 251 10.4.1 Operation steps. 251 10.4.2 Homing objects setting. 251 10.4.3 List of related objects. 252 10.4.4 Homing method: 6098h. 253 10.5 Profile Velocity Mode. 260	10.1.1 Operation steps	244
10.1.3 List of related objects. 246 10.2 Interpolation Position Mode. 247 10.2.1 Operation steps. 247 10.2.2 Related objects setting. 247 10.2.3 List of related objects. 248 10.3 Cyclic Synchronous Position Mode. 249 10.3.1 Operation steps. 249 10.3.2 List of related objects. 250 10.4 Homing Mode. 251 10.4.1 Operation steps. 251 10.4.2 Homing objects setting. 251 10.4.3 List of related objects. 252 10.4.4 Homing method: 6098h. 253 10.5 Profile Velocity Mode. 260	10.1.2 Related objects setting	
10.2 Interpolation Position Mode. 247 10.2.1 Operation steps. 247 10.2.2 Related objects setting. 247 10.2.3 List of related objects. 248 10.3 Cyclic Synchronous Position Mode. 249 10.3.1 Operation steps. 249 10.3.2 List of related objects. 250 10.4 Homing Mode. 251 10.4.1 Operation steps. 251 10.4.2 Homing objects setting. 251 10.4.3 List of related objects. 252 10.4.4 Homing method: 6098h. 253 10.5 Profile Velocity Mode. 260	10.1.3 List of related objects	246
10.2.1 Operation steps. 247 10.2.2 Related objects setting. 247 10.2.3 List of related objects. 248 10.3 Cyclic Synchronous Position Mode. 249 10.3.1 Operation steps. 249 10.3.2 List of related objects. 250 10.4 Homing Mode. 251 10.4.1 Operation steps. 251 10.4.2 Homing objects setting. 251 10.4.3 List of related objects. 252 10.4.4 Homing method: 6098h. 253 10.5 Profile Velocity Mode. 260	10.2 Interpolation Position Mode	247
10.2.2 Related objects setting.24710.2.3 List of related objects.24810.3 Cyclic Synchronous Position Mode.24910.3.1 Operation steps.24910.3.2 List of related objects.25010.4 Homing Mode.25110.4.1 Operation steps.25110.4.2 Homing objects setting.25110.4.3 List of related objects.25210.4.4 Homing method: 6098h.25310.5 Profile Velocity Mode.260	10.2.1 Operation steps	247
10.2.3 List of related objects.24810.3 Cyclic Synchronous Position Mode.24910.3.1 Operation steps.24910.3.2 List of related objects.25010.4 Homing Mode.25110.4.1 Operation steps.25110.4.2 Homing objects setting.25110.4.3 List of related objects.25210.4.4 Homing method: 6098h.25310.5 Profile Velocity Mode.260	10.2.2 Related objects setting	
10.3 Cyclic Synchronous Position Mode 249 10.3.1 Operation steps 249 10.3.2 List of related objects 250 10.4 Homing Mode 251 10.4.1 Operation steps 251 10.4.2 Homing objects setting 251 10.4.3 List of related objects 252 10.4.4 Homing method: 6098h 253 10.5 Profile Velocity Mode 260	10.2.3 List of related objects	248
10.3.1 Operation steps. .249 10.3.2 List of related objects. .250 10.4 Homing Mode. .251 10.4.1 Operation steps. .251 10.4.2 Homing objects setting. .251 10.4.3 List of related objects. .252 10.4.4 Homing method: 6098h. .253 10.5 Profile Velocity Mode. .260	10.3 Cyclic Synchronous Position Mode	
10.3.2 List of related objects. 250 10.4 Homing Mode. 251 10.4.1 Operation steps. 251 10.4.2 Homing objects setting. 251 10.4.3 List of related objects. 252 10.4.4 Homing method: 6098h. 253 10.5 Profile Velocity Mode. 260	10.3.1 Operation steps	249
10.4 Homing Mode	10.3.2 List of related objects	250
10.4.1 Operation steps	10.4 Homing Mode	
10.4.2 Homing objects setting	10.4.1 Operation steps	251
10.4.3 List of related objects252 10.4.4 Homing method: 6098h253 10.5 Profile Velocity Mode	10.4.2 Homing objects setting	
10.4.4 Homing method: 6098h253 10.5 Profile Velocity Mode260	10.4.3 List of related objects	252
10.5 Profile Velocity Mode260	10.4.4 Homing method: 6098h	
-	10.5 Profile Velocity Mode	

10.5.1 Operation steps	260
10.5.2 Statusword function description	
10.6 Cyclic Synchronous Velocity Mode	
10.6.1 Operation steps	262
10.7 Profile Torque Mode	264
10.7.1 Operation steps	264
10.8 Cyclic Synchronous Torque Mode	265
10.8.1 Operation steps	265
10.9 Touch Probe Function	
10.9.1 Operation steps	267
11.STO Function Description	270
11.1 Preface	270
11.1.1 Description of safety related words	270
11.1.2 Cautions	
11.1.3 Residual risk of STO function	271
11.1.4 Specifications	272
11.2 STO DI/DO connector(CN6) and signal arrangement	274
11.2.1 Signal arrangement	274
11.2.2 Signal name	275
11.3 Detailed description of the interface	276
11.4 STO alarm description and troubleshooting	277
12.Troubleshooting	279
12.1 Alarm list and clear methods	279
12.2 Causes and corrective actions	283
13.Product Specifications	299
13.1 Standard specifications of servo drive	299
13.2 Interface of servo drive	302
13.3 Dimensions of servo drive	
13.4 Standard specifications of SME servo motor	303
13.4.1 Low capacity servo motor	303
13.4.2 Medium capacity servo motor	
13.5 Motor dimensions	307
13.5.1 Dimensions of 3000rpm motor	307
13.5.2 Dimensions of servo motor keyway	309
13.6 Electromagnetic interference filter (EMI Filter)	311
13.7 EMI prevention countermeasures	
14.Features	314
14.1 Motor T-N curve/S-T curve	
14.2 Overload protection feature	319

15.Absolute Servo System	
16.Appendix	
16.1 Accessories	
16.2 Regenerative resistor	
16.3 Compliance with global standards	
16.3.1 Safety description	
16.3.2 Professional technicians	
16.3.3 Compliance with standards	
16.3.4 Usage tips	
16.3.5 Basic inspection and maintenance	
16.4 Manual version	

1.Product and Model Introduction

1.1 Overview

Shihlin communication-type AC servo have two control modes: single mode and dual mode. The single mode includes the following three modes: EtherCAT communication mode, position mode (internal register), and speed mode, the dual mode is position mode (internal register)/speed mode.

Our product is widely used in the general machinery industry for high-precision positioning, smoothly speed control, master-slave control, or tension control.

Shihlin servo applies EtherCAT industrial Ethernet network as the communication medium, which can not only transmit more data, but also simplify the wiring and reduce the cost of the hardware. In addition, it is configured with the most convenient USB communication function on the market, and by using the computer installed with Shihlin communication software, you can quickly do the parameter setting, test operation, status monitoring, and the control gain adjustment.

Shihlin servo optimizes the original auto-tuning function so that the servo gain can be automatically adjusted in a faster and more accurately way to match the machine. And the encoder resolution of Shihlin servo has been increased to 24-bit pulse/rev, which provides higher precision control.

1.2 Product checklist

Please check below items before you start to use our product:

- Any loose or unlocked screw on motor or drive.
- Check if the product model name on nameplates of the motor and drive are align with your purchase order. For the model name, you can refer to the product model list in next section.
- Check the motor and drive for any cosmetic damage or scratch.
- Rotate the motor shaft by hand, if it runs smoothly, it means there is no abnormality in the motor shaft. But If it is a motor with electromagnetic brake, it is not possible to turn the motor shaft smoothly by hand.

If any above of problem arises, please contact the distributor.

A complete servo set includes:

(1) A servo drive and a servo motor.

(2) A UVW motor power cable, one end locked to the UVW terminal block, the other end is connected to the UVW female socket on the motor, and the green ground wire is locked to the ground of the drive. (Optional purchase)

(3) An encoder control signal cable: its one end connects to the CN2 of the controller, the other end is connected to the encoder socket of the motor.

(4) A USB cable for communication, its one end connects to CN4 on the drive, the other end to USB port of the computer. (Optional purchase)

- (5) A 15 PIN connector for CN1. (Optional purchase)
- (6) A 9 PIN connector for servo below 1KW (L1, L2, L3, P, C, N, U, V, W).
- (7) A 3 PIN quick connector for servo under 3KW (U, V, W).
- (8) An installation guide.
- (9) A Shihlin servo user manual, it is also available online as an electronic file.

1.3 Product model name overview

1.3.1 Servo motor naming rule

1) Naming rule

- 2) Description of each item
- (1) Servo motor code: SM indicates servo motor
- (2) Model code: E
- (3) Inertia type: coding according to motor inertia:

Code	Туре
L	Low inertia
М	Middle inertia
Н	High inertia

(4) Motor capacity: motor output power

Code	010	020	040	075	100
Motor power(W)	100	200	400	750	1000

(5) Rated speed: the rated motor speed

Code	15	20	30
Rated speed(rpm)	1500	2000	3000

(6) Encoder type: Shihlin servo motor encoder type

Code	Т	Ν	S	М
Single turn resolution type	17bit	17bit	24bit	24bit
Number of revolutions	-	\pm 15bit		\pm 15bit

(7) Brake and oil seal: the following codes is to indicate whether the motor is equipped with brake and oil seal.

Code Item	A	В	С	D
Brake	-		-	
Oil seal	-	-	•	•

(8) Keyway and outlet type: Whether the motor has a keyway and wire outlet type is indicated by the following code.

Code Item	A	В	С	D
Keyway	-		-	\bullet
Back side cable	-	-	•	•

(9) Safety certification: the certified safety certification of the motor is indicated by the following code:

Code Item	CE certification	Compliant with UL/CE certification
Code	-	U

Coding example:

Example(1): for a 200W motor, low inertia, rated speed 3000rpm, without brake&oil seal& keyway, single turn absolute magnetic encoder, CE certified model, its model name is as follows: SME-L02030TAA.

Example(2): for a 750W motor, low inertia, rated speed 3000rpm, with brake, without oil seal, with keyway, multi-turn absolute magnetic encoder, back side cable, UL certified, its model name is SME-L07530NBDU.

Example(3): for a 1000W motor, low inertia, rated speed 3000rpm, without brake, with oil seal and keyway, with multi-turn absolute magnetic encoder, CE certified, its model name is SME-L10030NCB.

1.3.2 Servo drive naming rule

1) Coding Rule

- 2) Description of each coding item
- (1) Servo drive code: SD means servo drive.
- (2) Model code: C
- (3) Drive capacity: motor output power.

Multiply the motor output power by 1/10 and then indicate it as a three-code number. For models above 1000W, uses the English letter K to represent 1000W in the third code. The example is as follows:

020 means 200W

100 means 1000W

(4) Communication types: There are different types of communication formats.

Code Item	А	E
Communication	Modbus	EtherCAT
type	Moubus	LINEICAI

- (5) Power supply type: Input power specifications.
 - 2: AC220V power supply, single-phase or three-phase
 - 4: AC440V power supply, three-phase
- (6) Detail code: The drive application is categorized according to the following code.

Code Item	N/A	A	
Model type	Normal type		

(7) Safety certification

Code N/A		U	
Safety certification	CE certified	UL/CE certified	

(8) Serials

Code Item	N/A	Т	SXX
Description	Conoral type	STO with Entity Dynamic	Customized special types or
Description	General type	Brake	region

Example description:

Example (1): 200W drive, CE certified, single or three phase 200~240VAC, general type, then the code is as follows: SDC-020E2A

Example (2): 400W drive, UL and STO certified, single-phase or three-phase 200~240VAC, general type, customized for a customer, then the code is: SDC-040E2AU-TXX, where XX is a number.

1.3.3 Servo drive and motor

	Servo drive model	Servo motor model
100\/		SME-L01030 • 🗆 🗆
10000		SM3-M01030 • □ □ □
20014/	SDC 000E0=> * * *	SME-L02030 • 🗆 🗆
20000		SM3-M02030 • □ □ □
400W	SDC-040E2□○- * * *	SME-L04030 • 🗆 🗆
		SM3-M04030 • □ □ □
		SM3-H04030 • 🗆 🗆
		SME-L075300000
750W	SDC-075E2□0- * * *	SM3-M07530 • □ □ □
		SM3-H07530 • 🗆 🗆
1000\/	SDC 100E2	SME-L100300000
	SDC-100E200-* * *	SM3-M10030 • 🗆 🗆

Note 1:
□ in servo drive model name represents safety certification, and *** represents market definition/market/customer.

Note 2: \circ in servo motor model name represents encoder type, \circ =T represents single-turn encoder, \circ =N represents multi-turn encoder.

Note 3: Please refer to section 1.3.1 for the description of $\Box \Box \Box$ in servo motor.

1.4 Description of servo drive interfaces

1.4.1 Models below 1kW

1.4.2 Models above 1.5kW-3kW

No such capacity currently.

1.5 Servo drive operation mode introduction

Shihlin drive offers a variety of operation modes, which are detailed in the following table.

Mode name Mode Descri		Description	
	EtherCAT mode CoE Position mode (internal register)		The drive receives commands from the EtherCAT host controller and performs mode control accordingly. There are 8 types of control modes, including CSP, CSV, CST, PP, PV, PT, HM, IP.
jle mode			The drive receives position commands and runs the motor to the target position. Position commands are provided by internal registers (64 groups of registers), and it can be controlled by DI signals.
Sing	Speed mode	S	The drive receives speed commands and runs the motor to the target speed, the speed commands are internal speed command (7 groups of registers).
	Dual mode	Pr-S	Pr and S can be switched by DI signal.

Mode selection is accomplished by setting parameter PA01. After setting the parameter, cycle power to the servo drive.

> If using the factory defined pin function, please set parameter PA01 to 1XXX.

1.6 Recommended specifications for circuit breakers and fuses

Drive model name	Fuse	Circuit breaker		
SDC-010E2□	5A	5A		
SDC-020E2□	5A	5A		
SDC-040E2□	20A	10A		
SDC-075E2	20A	10A		
SDC-100E2	25A	15A		

The specifications table of fuses and circuit breakers:

2.Installation

2.1 Precautions and storage

- > Do not install on or near flammable materials.
- > Do not pull the wires between the drive and motor too tightly.
- > Do not place heavy objects on top of the drive.
- > When fixing the drive, make sure that each fixing point is screwed firmly.
- > Install the drive in a place where it can bear weight.
- > The motor shaft center must be aligned with the equipment shaft.
- Do not mix the below objects in the drive, including metal sheets, screws and other conductive objects or flammable materials such as oil.
- If the drive is more than 20 meters away from the connected motor, you should thicken the U, V, W and Encoder connecting wires.
- > The exhaust vent of the drive should not be blocked, otherwise it may cause failure.
- > The drive should not be dropped or stroked.
- > Do not force to run when the drive is damaged.
- > Please refer to section 16.3.5 for the storage precautions of the drive and motor.

2.2 Installation environment

The applicable ambient temperature for Shihlin drive is between $0^{\circ}C \sim 55^{\circ}C$. If it exceeds $45^{\circ}C$, you should place the drive in a well-ventilated or air-conditioned room. It is recommended to keep the ambient temperature below $45^{\circ}C$ for long-term operation to ensure the reliable performance. If it is installed in a distribution box, check the size of the distribution box and its ventilation condition, make sure the internal electrical devices has no overheating risk, and you should note whether the vibration of the machine will affect the electronic devices in the distribution box. In addition, the conditions for the use of Shihlin servo include the following items:

- Iocations without high-heat generating devices.
- Iocations without floating dust or metal particles.
- Iocations without corrosive, flammable gas or liquid.
- > locations without water droplets, vapor, dust, or oily dust.
- > locations without electromagnetic noise interference.
- locations without vibration.

2.3 Installation direction and clearances

Precautions:

Install the servo drive in the correct direction according to the requirement. Otherwise, it may cause malfunction. For better ventilation and cooling, when installing Shihlin AC servo drive, there must be sufficient clearance between its adjacent objects and the wall, otherwise overheating may result in machine malfunction. Do not block the ventilation holes of the servo drive, and the drive cannot be placed upside down, otherwise it will cause malfunctions.

Installation diagram:

In order to have adequate air flow for ventilation, you must observe the recommended clearance space between one and multiple AC servo drives (as shown in the figure below):

3.Wiring and Signal

This chapter introduces the wiring method of Shihlin servo drives, the definition of various signals, and the standard wiring diagrams in each control mode.

3.1 Connection of power supply and peripheral devices

3.1.1 Peripheral devices wiring diagram - below 1KW

* For detailed EMI filter introduction, please refer to section 13.6 EMI Filter.

To prevent electric shock, the protection earth (PE) terminal (marked terminal) of the servo drive must be connected to the protection earth terminal of the controller

3.1.2 Peripheral devices wiring diagram - 1.5KW~3KW

No such capacity currently.

3.1.3 Description of drive connectors and terminals

Item	Code	Description				
Power input	L1, L2, L3	Connect to three-phase AC power				
		Terminal	Wire			
		code	со	lor		
Dower input of motor		U	Red			
	U, V, VV, PE	V	Wł	nite		
		W	Bla	ack		
		PE	Gre	een		
		Use an		Ren	nove the existing wiring	
Pagaparativa register		external	l	and	connect to the	
terminals	P, C	resistor		rege	enerative resistor.	
		Use a built	t-in	P ar	nd C ends connect to the	
		resistor		inter	nal regenerative resistor.	
		Connect to the ground wires of the power a			d wires of the power and	
Ground terminals	\oplus	servo motor, which is the green screw on the				
		outside of the controller.			r.	
P: main circuit [+]	P, N	If brake unit is used, you should connect its [+]				
terminal		terminal to the [P] terminal of servo drive, and				
N: main circuit [-]		connect its [-] to the [N] terminal of servo drive.				
terminal		The brake u	nit is	optio	nal purchase item, usually it	
		is not req	uired	. It	is used to absorb the	
		regenerative	ene	rgy w	hen the huge regenerative	
		power is gen	erate	ed by	the servo motor.	
I/O connector	CN1	Connect to the	ne ho	ost co	ntroller.	
Encoder connector	CN2	Connect to the	ne m	otor e	ncoder.	
EtherCAT connector	CN3	Connect to EtherCAT host controller.				
USB connector	CN4	Connect to L	JSB s	slot of	PC	
Power connector for	CN5	Connect to battery pack of absolute encoder				
absolute encoder		(optional purchase)				
STO connector	CN6	Connect to t	he d	edica	ted connector or application	
		circuits corresponds to STO.			STO.	

Pay special attention to the following items when wiring:

1.Separate R,S,T and U,V,W from other signal wires. The clearance should be at least 30cm.

2.When the power is off, do not touch L1,L2,L3 and U,V,W power cables, the large capacitor inside the drive contains a large amount of charge, wait until the charging light is off before touching.

3.If the encoder cable needs to be extended, please use a twisted signal cable with isolated grounding. Do not exceed 20 meters (65.62 ft.). If it exceeds 20 meters, please use a signal cable with twice diameter to ensure that the signal will not be attenuated too much.

4.If the power supply and the detector (encoder) of the servo motor are not fixed on the motor, it may shake and cause poor contact.

3.1.4 Wiring for power supply

• Insulate the connections of the power supply terminals, otherwise there is a risk of electric shock.

 The power supply (U, V, W) of the servo motor and servo drive must be connected correctly, otherwise the servo motor will operate abnormally.

• The servo motor should not be connected to a commercial power supply, otherwise it will cause a malfunction.

The Shihlin servo drive power wiring is a three-phase power. In the following diagram, Power ON is A contact, Power OFF and Alarm Processing are B contact. 1MC/a is a self-retaining power supply and 1MC is an electromagnetic contactor.

★ Note: Terminal P, N cannot be grounded.

3.1.5 Specifications for the UVW connectors of the motor

Drive capacity	Motor model	
100W	SME-L010300000	
200W	SME-L02030 • 🗆 🗆	456 34
400W	SME-L040300000	
750W	SME-L075300000	With brake Without brake
1kW	SME-L100300000	

U, V, and W connector specifications for low and high inertia motors (female connector):

U, V, and W connector specifications for medium and high inertia motors (female connector):

Drive capacity	Motor model	$\left(1234 \right)$
100W	SM3-M01030	
200W	SM3-M02030	
400\\/	SM3-M04030	
400%	SM3-H04030	
750\\/	SM3-M07530	
75000	SM3−H07530∘□□□	
1kW	SM3−M10030₀□□□	

The following table shows the signals of UVW connectors for motors.

PIN	Signal	Wire color
1	U	Red
2	V	White
3	W	Black
4	PE	Green/yellow(green is base color)
5	B1	Black(for motor with electromagnetic brake)
6	B2	Black(for motor with electromagnetic brake)

★ Note: the above wiring is the connector of the motor.

3.1.6 Wire selection

		[mm²]		
Drive model	Power cable(AWG)			
	L1, L2, L3	U, V, W	P, C, N	B1, B2
SDC-010E2□				
SDC-020E2				
SDC-040E2	2(AWG14)	2(AWG14)	2(AWG14)	2(AWG14)
SDC-075E2				
SDC-100E2				

	Encoder cable (AWG)							
Drive model	Snoo	Standard	Number of	Core wire				
	Spec	length	core wires	size				
SDC-010E2□	UL1332	2 m	10 wires	AWG26				
SDC-020E2	UL1332	2 m	10 wires	AWG26				
SDC-040E2	UL1332	2 m	10 wires	AWG26				
SDC-075E2	UL1332	2 m	10 wires	AWG26				
SDC-100E2	UL1332	2 m	10 wires	AWG26				

- > You should follow the recommended specifications or larger for wiring to avoid danger.
- > The shield end of the isolation net should be grounded.
- > Use twisted isolation wire to reduce noise interference when wiring encoders.
- > American Wire Gauge (AWG) means American Wire Gauge standard.
- Use 600V vinyl wire as standard configuration, and the wiring distance should be less than 30m.
- If the wiring distance exceeds 30m, you should consider the voltage drop before selecting the wire size.
- For UL/C-UL (CSA) specifications, use UL-certified copper wires which is rated 75°C or higher for wiring.
- > AWG14, 12in-lbs is required for grounding wire.

3.2 CN1 I/O signal wiring and description

3.2.1 CN1 terminal configuration diagrams

Shihlin servo drive provides user-defined 5 groups of digital inputs(DI) and 3 groups of digital outputs(DO), it is more flexible when connecting to the upper controller application and communicating with each other. The 5 digital inputs are parameters PD02~PD06 and the 3 digital outputs are parameters PD10~PD12, the pin diagram are as follows:

(1) CN1 connector(female)

Front view

Pin	Code	Function	Pin	Code	Function	Pin	Code	Function
1	DO1	Digital output 1	6	DOCOM	Digital Output	11	DI5	Digital input 5
					Power Supply			
2	DOCOM	Digital Output	7	DI4	Digital input 4	12	NC	NA
		Power Supply						
3	DO2	Digital output 2	8	DI3	Digital input 3	13	COM+	Digital input Power
								Supply
4	DOCOM	Digital Output	9	DI2	Digital input 2	14	SG	Digital Power
		Power Supply						Ground
5	DO3	digital input 3	10	DI1	Digital input 1	15	Vdd	Internal power
							(24V)	supply +24V output

3.2.2 Description of CN1 terminal signals

This section introduces the signals which listed in the previously section.

1.CN1 terminal signal

The details of each signal in CN1 15Pin are as follows:

The control mode symbols in below table are as follows:

CoE: EtherCAT communication mode

Pr: Position control mode (Internal register)

S: Speed control mode

Signal name	Code	Pin NO	Function	Control mode
Digital Power Ground	SG	CN1-14	Common terminal for DI, such as SON, EMG, etc. Each pin is connected internally but separated from LG.	ALL
Digital power	COM+	CN1-13	Input DC24V for the input connector. Please connect to the positive terminal of the external power supply DC24V.	ALL
Internal power supply +24V output	VDD (24V)	CN1-15	Output +24V±10% between VDD-SG. Please connect to COM+ when used as a power supply for digital interface.	ALL

The signals of DI and DO will be introduced in detail in the following sections.

2.Shihlin servo CN1 I/O

Abbreviation	Signal name	Abbreviation	Signal name
SON	SERVO ON	CTRG	Position command trigger
LSP	Limit of forward rotation	PC	Proportion control
LSN	Limit of reverse rotation	CAM	E-CAM engaging control
CR	Clear	RD	Ready
SP1	Speed option 1	POS3	Position command option 3
SP2	Speed option 2	POS4	Position command option 4
SP3	Speed option 3	POS5	Position command option 5
ST1	Forward rotation activated	ZSP	Zero speed detection
ST2	Reverse rotation activated	INP	In-position ready
TL	Torque limit option	SA	Speed attained
RES	Reset	ALM	Alarm
EMG	External emergency stop	SG	DC24V power ground
	Control mode owitch	VDD	The positive terminal of the
LOP	Control mode switch		internal power supply DC24V
POS1	Position command option 1	COM +	The positive terminal of the
			external power supply DC24V
POS2	Position command option 2	POS6	Position command option 6

Shihlin servo CN1 I/O, DI/DO name & abbreviation table are as follows:

3. Detailed explanation for DI and DO signals

Digital input(DI) Wiring

A total 31 groups of DI function for manually parameter setting, see the table below for details.

Signal name	Code		Function						
Servo ON	SON	Turn SON ON, the basic circuit connects to the power and the servo is ready to be operated (servo ON status). Turn SON OFF, the basic circuit is cut off and the servo motor is switch to free run status(servo OFF status).							
Reset	RES	Perform alarr sometimes th 13.1), the circ	Perform alarm reset after RES is turned on for over 50 ms, but sometimes the alarm may not able to be cleared (refer to section 13.1), the circuit cannot be cut off if one parameter is set to XXX1.						
Proportion control	PC	Turn PC on, t type to propo torque to res revolution. Or from unneces When locking the proportion	Furn PC on, the speed controller is switched from proportion integral type to proportion type. When the servo motor stops, it will output corque to resist the external disturbance which even only 1 pulse revolution. Once the positioning is done, please turn PC on to prevent from unnecessary torque. When locking for a long time, turn the torque control signal (TL) and the proportion control signal on to limit the output torque						
Torque limit option	TL	The options of TL are showing in the table below:TL - SGTorque limitOpenTorque limit =PA 05ShortIf PC25 setting > PA05 setting => TL=PA05If PC25 setting < PA05 setting => TL=PC25					ALL		
Origin position	ORGP	In internal po position as th SHOM is ON	In internal position register mode or CoE mode, the servo takes this position as the origin when ORGP is on. Servo starts homing when SHOM is ON or executing homing of CoE mode.						
Forward rotation activated	ST1	When start th	en start the servo motor, it runs in the following directions: Input signal ST2 ST1 Running direction						
Reverse rotation activated	ST2	If both ST1 a servo decele	0 0 1 1 and ST2 a rates to a	0 1 0 1 are switch stop and	Stop(servo locked) CC W CW Stop(servo locked) ed on or off during o then locks. If the a	operation, the analog speed	S		

		command (VC) is at 0V, the motor will not be locked, even the						
		running signal is on.						
Signal	Oada	Function	Control					
name	Code	Function	mode					
Speed	0.04	To select the rotation speed in speed mode.						
option 1	SP1	When using SP3, make it usable by setting internal parameters.						
Speed		Input signal Parameter SP3 SP2 SP Setting SP3 SP2 SP						
opeca	SP2	When speed 0 0 Speed command is 0						
option 2		option (SP3) 0 1 Inner speed command 1						
		is invalid. 1 0 Inner speed command 2						
		(Initial 1 1 Inner speed command 3	S					
		0 0 0 Speed command is 0						
		0 0 1 Inner speed command 1						
		0 1 0 Inner speed command 2						
Speed	SP3	When speed 0 1 1 Inner speed command 3						
option 3		option (SP3) 1 0 0 Inner speed command 4						
		Is valid. 1 0 1 Inner speed command 5						
		1 1 Inner speed command 7						
Start Home		In the internal position register mode, turn SHOM ON to start the						
moving	SHOM	searching origin.	Pr					
Electronic		When CM1 and CM2 are used, the combination of CM1 and						
gear option	CM1	CM2 can be used for selecting the E-gears, and the numerator with 4						
1		kinds of electronic gear ratios can be set in parameters. CM1 and						
		CM2 cannot be used in the absolute position detection system						
Electronic		CM2 CM1 E-gear numerator	Pr					
	0.40	0 0 PA06(CMX)						
gear option	CM2	0 1 PC32(CMX2)						
2		1 0 PC33(CMX3)						
		1 1 PC34(CM)						
		To clear the position control counter deviation pulses on its rising						
Clear	CR	edge when CR is ON. The pulse width should be over 10ms.	Pr					
		When the PD18 is set to xxx1, the pulse is always cleared if CR is on.						
Gain		Turn CDP on to switch each gain values to the multiplier of parameter						
switchina	CDP	setting value.	ALL					
option		5						
941011								

Signal name	Code	Function								Control mode
Control mode switch	LOP	To select t mode LOP 0 1	he cont	rol mode ontrol ode sition beed	e in the	position	/speed of	control s	witching	Refer to the different control modes description
External emergency stop	EMG	servo is of stop state would be a	servo is off and brake is enabled. Turn EMG on in the emergency stop state to release the EMG state. Set PD01 to 1XXX, this signal would be automatically on(always ON).							ALL
Position command 1	POS1	Position	POS6	POS5	POS4	POS3	POS2	POS1	CTRG	
Position command 2	POS2	command P0	0	0	0	0	0	0	↑	
Position command 3	POS3	P1	0	0	0	0	0	1	1	
Position command 4	POS4	~ P50	1	1	0	0	1	0	<u> </u>	Pr
Position command 5	POS5	P51	1	1	0	0	1	1	<u> </u>	
Position command 6	POS6	P63	1	1	1	1	1	1	<u>↑</u>	
Position command trigger	CTRG	In Pr mode by POS1~6	In Pr mode, when CTRG is on, read the position command selected by POS1~6 into the controller.							Pr
Limit of forward rotation	LSP	Turn LSP o	on, the n	notor car	n perforn	n forwar	d rotatio	n.		CoE, Pr, S
Limit of reverse rotation	LSN	Turn LSN o	on, the n	notor ca	n perforr	n revers	e rotatio	n.		CoE, Pr, S

Signal name	Code	Function				
Event						
trigger Pr	EV1					
command1						
Event						
trigger Pr	EV2	The $\Gamma / 4$ $\Gamma / 4$ status sharpes is set as trigger event, it can be				
command 2		The EVT~EV4 status change is set as ingger event, it can be activated by perspector PE^{22} or PE^{24} actting	Dr			
Event		Application: Connecting concern, and triggering default programs	ΡI			
trigger Pr	EV3	Application. Connecting sensors, and triggering default programs.				
command 3						
Event						
trigger Pr	EV4					
command 4						
Motor stop		In internal position register mode, turn STOP on and the motor will				
signal in	STOP	stop.	Pr			
Pr mode						

1.ST1/RS2 and ST2/RS1 will be switched internally when parameter PA01 is in speed mode (ST1) or torque mode (RS2).

2.Only when set PA01 to $0\square\square\square$, you can manually arrange the terminal. If PA01= $1\square\square\square$, the DI/DO recommended setting will be used as its setting value.

Digital output(DO)

A total 28 groups of DO functions can be manually arranged, see the table below for details.

Signal name	Code	Function	Control mode
Ready	RD	RD turns ON when servo is ON and ready to operate.	ALL
Alarm signal output	ALM	ALM turns ON when the power supply is OFF or when the protection circuit is enabled to cut off the main circuit. When no alarm occurs, ALM turns ON one second after power is turned on.	ALL
In-position ready	INP	INP turns ON when the servo is in the setting in-position range. This range can be adjusted. When the setting is large, the INP may be turned ON often during low speed operation.	Pr
Signal name	Code	Function	
------------------------------------	--------	--	-------
Speed attained	SA	SA turns ON when the servo motor speed is close to the setting speed. If the setting speed is 50r/min or less, it may be turned ON often.	S
Home moving completion	HOME	Home turns ON after homing is completed.	Pr
Torque limiting control	TLC	TLC turns ON when torque reaches internal torque limit 1 (parameter PA05), and TLC turns OFF when SON signal is OFF.	Pr, S
Electromagnetic brake interlock	MBR	Set PA01=01000 to enable the electromagnetic brake motor. MBR turns OFF if the servo is OFF or an alarm occurs. MBR is ON if the servo turns ON.	ALL
Warning	WNG	WNG turns ON when a warning occurs and WNG turns OFF when no warning occurs	ALL
Zero speed detection	ZSP	ZSP turns ON when the servo motor speed is below zero speed (50 r/min), and the range of zero speed can be changed by parameter.	ALL
Pr command completion output	CMDOK	CMDOK turns ON when the internal position command is completed or stopped	Pr
Overload output warning	OLW	When the motor reaches overload level setting, the OLW is ON.	
Internal position reached	МС_ОК	When both DO CMD_OK and INP are ON, MC_OK is ON. Otherwise, it is OFF.	Pr
Position command overflow	OVF	The OVF signal is ON when the position command overflows.	Pr
Software positive limit	SWPL	When the number of motor feedback pulses is greater than the software positive limit (PF86), the SWPL is ON, otherwise it is OFF.	Pr
Software negative limit	SWNL	When the number of motor feedback pulses is less than the software reverse limit (PF87), the SWNL is ON, otherwise it is OFF.	Pr
STO module abnormal	STO_FB	When STO1 and STO2 modules are in error, STO_FB is ON, otherwise it is OFF.	ALL
Software DO 1	S_DO0	Output bit00 of PD33.	ALL
Software DO 2	S_DO1	Output bit01 of PD33.	ALL
Software DO 3	S_DO2	Output bit02 of PD33.	ALL

Signal name	Code	Function	Control mode
Software DO4	S_DO3	Output bit03 of PD33	ALL
Software DO 5	S_DO4	Output bit04 of PD33	ALL
Software DO 6	S_DO5	Output bit05 of PD33	ALL
Software DO 7	S_DO6	Output bit06 of PD33	ALL
Software DO 8	S_DO7	Output bit07 of PD33	ALL
Software DO 9	S_DO8	Output bit08 of PD33	ALL
Software DO 10	S_DO9	Output bit09 of PD33	ALL
Software DO 11	S_DOA	Output bit10 of PD33	ALL
Software DO 12	S_DOB	Output bit11 of PD33	ALL

1.INP and SA will be switched automatically when parameter PA01 is in speed mode or position mode.

2.TLC and VLC will be switched automatically when parameter PA01 is in speed mode or position mode.

You can assign DI/DO function by setting parameters PD02~PD06 and PD10~PD12.

The terminal function changes according to the control mode, please refer to the following table.

DI functions and recommended setting value

DI code	Name	Function		Pr	S
0x01	SON	Servo ON	DI1	DI1	DI1
0x02	RES	Reset			
0x03	PC	Proportion control			
0x04	TL	Torque limit option			
0x06	SP1	Speed option 1			DI2
0x07	SP2	Speed option 2			
0x08	SP3	Speed option 3			
0x09	ST1	Forward rotation activated			DI3
0x0A	ST2	Reverse rotation activated			DI4
0x0A	RS1	Forward rotation option			
0x09	RS2	Reverse rotation option			
0x0B	ORGP	Origin position	DI2		
0x0C	SHOM	Start Homing			
0x0D	CM1	Electronic gear option 1			
0x0E	CM2	Electronic gear option 2			
0x0F	CR	Clear			
0x10	CDP	Gain switching option			
0x11	LOP	Control Mode Switch			
0x12	EMG	External emergency stop	DI5	DI5	DI5
0x13	POS1	Position command option 1		DI2	
0x14	POS2	Position command option 2		DI3	
0x15	POS3	Position command option 3			
0x16	CTRG	Position command trigger		DI4	
0x18	LSP	Limit of forward rotation	DI3		
0x19	LSN	Limit of reverse rotation	DI4		
0x1A	POS4	Position command option 4			
0x1B	POS5	Position command option 5			
0x1C	POS6	Position command option 6			
0x1D	INHP	Inhibit pulse input			
0x1E	EV1	Event trigger Pr command 1			
0x1F	EV2	Event trigger Pr command 2			
0x20	EV3	Event trigger Pr command 3			
0x21	EV4	Event trigger Pr command 4			
0x24	STOP	Motor stop signal in Pr mode			

DO functions and recommended setting value

DO code	Name	Function		Pr	S
0x01	RD	Ready	DO2	DO2	DO2
0x02	ALM	Alarm signal output	DO3	DO3	DO3
0x03	INP	In-position ready		DO1	
0x03	SA	Speed attained			DO1
0x04	HOME	Home moving completion			
0x05	TLC	Torque is limiting			
0x05	VLC	Speed is limiting			
0X06	MBR	Electromagnetic brake interlock			
0x07	WNG	Warning			
0x08	ZSP	Zero speed detection			
0x09	CMDOK	Internal position command completion			
0x0A	OLW	Overload output warning			
0x0B	MC_OK	CMDOK and INP are both ON.			
0x0C	OVF	Position command overflow			
0x0D	SWPL	Software positive limit is reached			
0x0E	SWNL	Software negative limit is reached			
0x1F	STO_FB	STO module abnormal			
0x20	S_DO0	Software DO 1			
0x21	S_DO1	Software DO 2			
0x22	S_DO2	Software DO 3			
0x23	S_DO3	Software DO 4			
0x24	S_DO4	Software DO 5			
0x25	S_DO5	Software DO 6			
0x26	S_DO6	Software DO 7			
0x27	S_DO7	Software DO 8			
0x28	S_DO8	Software DO 9			
0x29	S_DO9	Software DO 10			
0x2A	S_DOA	Software DO 11			
0x2B	S_DOB	Software DO 12			

3.2.3 Wiring diagrams

(1) DI in SINK type

(2) DI in Source type

When DI is using Source type, all the DI signals will be in Source type. Output cannot be in Source type.

(3) Digital output(DO)

It can drive lamp, relay and photocoupler. When a relay is loaded, a diode is required, and when an external lamp is loaded, a resistor to suppress the surge current is required. (Allowable current: 40mA or less, surge current: 100mA or less)

3.2.4 DI and DO signals for manual set

The default DI and DO signals of Shihlin servo are the signals of the position mode. If the default DI/DO signals or the operating mode are not the required one, you can manually change the signals of DI/DO. The functions of DI1 ~ DI5 and DO1 ~ DO3 are determined by the PD02 ~ PD06 and PD10 ~ PD12 respectively. You can input DI code or DO code in the corresponding parameters. The following describes the CN1 Pin for DI/DO signals and the corresponding parameters.

CN1 Pin	Signal name	Parameter
CN1-10	DI1	PD02
CN1-9	DI2	PD03
CN1-8	DI3	PD04
CN1-7	DI4	PD05
CN1-11	DI5	PD06

CN1 Pin	Signal name	Parameter
CN1-1	DO1	PD10
CN1-3	DO2	PD11
CN1-5	DO3	PD12

3.3 Encoder/Linear scale signal wiring and description

3.3.1 CN2 encoder signal wiring and description

The pin assignment of CN2 and its appearance are as follows:

(1) CN2 connector(Female)

(2)CN2 connector (Male)

3M connector rear view

Connector side view

Molex connector rear view

Pin	Pin marking	Signal	
1, 3	Vcc(5V)	Encoder 5V power supply	
2.4	GND	Encoder ground terminal	
2,4	GND	Battery ground terminal	
5	Vcc(3.6V)	Battery 3.6V power	
6	ENCP	Encoder communication(+)	
7	ENCN Encoder communication(-)		
8			
9			
10			
Casing	Shielding	Shielding	

CN2 signal list for incremental/absolute encoder

3.3.2 Specifications for the encoder connectors

Low capacity motor

Applicable servo drive capacities are shown in the table below

Drive capacity	Motor model name
100W	SME-L00530○□□ SME-L01030○□□
200W	SME-□02030○□□
400W	SME-□04030○□□
750W	SME-□07530○□□

Drive capacity	Motor model name	
100W	SM3-M010300000	4 3 8 7
200W	SM3-M020300000	
400\\/	SM3-M040300000	
40077	SM3-H040300000	
750\\/	SM3-M07530occ	956
75000	SM3-H07530occ	
1kW	SM3-M100300000	

Pin	Pin marking	Signal
1		
2		
3	Vcc(3.6V)	Battery power 3.6V
4	GND	Battery ground terminal
5	ENCN	Encoder communication(-)
6	ENCP Encoder communication(+	
7	Vcc(5V)	Encoder 5V power
8	GND	Encoder ground terminal
9	Shielding	Shielding

- > Note: The above wiring are the connectors from the motor itself.
- > The meaning of $\Box \Box \Box$ is shown in P13.

Drive front end		Motor wiring end		
Pin No.	Pin marking	Signal	Quick connector (low capacity) Pin No.	Military connector (medium capacity) Pin No.
1, 3	Vcc(5V)	Encoder 5V power	7	В
2.4	GND	Battery ground terminal	4	А
2, 4	GND	Encoder ground terminal	8	F
5	Vcc(3.6V)	Battery 3.6V power	3	Н
6	ENCP	Encoder communication (+)	6	D
7	ENCN	Encoder communication (-)	5	E
-	Shielding	Shielding	9	I

The wiring ends of drive and motor are summarized as follows:

3.4 CN3/CN3L communication port wiring and description

CN3 is an interface for EtherCAT communication. You can connect the drive to a computer via a standard network cable and then utilize a host controller which supports EtherCAT communication for servo control. After connected by CN3, you need to set the EtherCAT mode with parameter PA01, and then the servo can read the online signal. For long distance data transmission via EtherCAT mode, the max distance between axes is 50 meters. Otherwise, you should consider the signal attenuation phenomenon and multiple drives connection at the same time.

	- 00		
	- 10		٦.
			1
	4		
	- m	_ <u> </u>	-
	- 2		
<u> </u>			

Description of CN3 port

Pin NO	Pin marking	Function
1	TX +	Transmit +
2	TX -	Transmit -
3	RX +	Receive +
4	-	-
5	-	-
6	RX -	Receive -
7	-	-
8	-	-

There are some LED indicators on the communication port, such as network status indicator, EtherCAT online status indicator (RUN) and EtherCAT error indicator (ERR). The indicators show the current communication port online status, EtherCAT state machine status and any communication error, the following tables illustrate the display of the indicators.

Indicator	Status	Function	Description	
On	On	Connection is established	. Connection is established but no data	
On	On	Connection is established.	transmission.	
Dlink	Dlink	Connection is established and in data	Deta is in transmission	
		transmission.		
Off	Off	No connection.	Connection is not established.	

CN3 Port indicator description

Indicator	Status	Function	Description
Off	Off	Initial	After power-on, EtherCAT initialization is finished and communication has not yet begun, but the upper controller can access the register.
On	On	Operational	SDO, TxPDO, and RxPDO data packets can be transmitted.
Blinking	Blinking	Pre-Operational	The upper controller can exchange data through the mailbox
Single	Single	Safa Operational	The servo drive can use the SDO and TxPDO data packets to
Flash	Flash	Sale-Operational	exchange data with the upper controller.

State Machine Switching Diagram

EtherCAT ERR indicator description

Indicator	Status	Function	Description
Off	Off	No error	No error occurs.
On	On	PDI Watchdog	Clear the alarm as per instruction, if the issue persists,
On	On	timeout	contact the distributor.
			The system is unable to switch states due to incorrect
Blinking	Blinking	State change error	parameter settings. Please check the upper controller
			program.
		Synchronization	
Single	Single	error	Eailure of synchronization between the upper controller and
Flash Fla	Flash	or	the device or loss of data during data recention
	1 10511	SyncManager	
		error	

3.5 CN4 USB communication port

Shihlin servo drive is equipped with USB socket(CN4). By connecting CN4 to PC with the universal Mini-USB, you can perform parameter setting, status monitoring, test operation and etc with Shihlin communication software.

Mini-USB is a common component in the market and very easy to buy, which greatly increases the convenience.

The following table lists Mini-USB standard pin assignment:

Pin NO	Pin function
1	+5V
2	D-
3	D+
4	NC
5	GND

3.6 CN5 battery socket for absolute encoder

When using an absolute servo motor, an external battery box is required. After connecting to battery by plug in CN5, you can set the parameters.

The following table shows the pin assignment of CN5.

Pin NO	Pin function	Description
1	Vcc(3.6V)	Battery 3.6V power
2	GND	Battery ground terminal

3.7 CN6 Safe Torque Off (STO) connector description

The pin assignment of the connector (CN6) are as follows:

The following table describes the functions of the STO related terminals:

Terminal name	Function	Description
+241/	Internal +241/ newer supply	Output Voltage Range: +24V±10%
+24V	Internal +24v power supply	Output Current Range: below 200mA
07.04		STO1/STO2
5101	STO Input 1	Rated Input Voltage: +24V±10%
		STO action mode
S102	STO input 2	Input voltage level: 0~5V
		STO response time: <=8mS
0V	STO reference ground	STO cut-off mode
		Input voltage level: 18~30V

STO related terminal function description

The STO action principle is illustrated in the following table

STO1 input	STO2 input	Drive status
Н	L	PWM signal is disabled, torque output stops.
L	Н	PWM signal is disabled, torque output stops.
L	L	PWM signal is disabled, torque output stops.
Н	Н	Normal

STO action principle

If any one of the STO1 signal input and STO2 signal input is L (the input voltage is less than 5V), it indicates that the safety circuit is abnormal. Only when they are both H (the input voltage is more than 18V and less than 30V) means the safety circuit is normal.

3.8 Standard wiring instruction

• Only professional technician can do the wiring.

• Wiring must be done at least 20 minutes after the power is turned off and the voltage is checked with a meter, otherwise it may cause electric shock

•The servo drive and servo motor must be grounded.

• Wiring should be done only after the servo drive and servo motor are installed, otherwise electric shock may occur.

•Don't scratch or apply excessive stress on the cable or press it with heavy objects.

•The wiring should be correct, otherwise overshoot may occur.

•The terminals wiring should be correct, otherwise it may cause damage or abnormal operation.

•The polarity (+/-) must be correct, otherwise it may cause damage or abnormal operation.

•The polarity of the surge absorbing diode, which is installed on the output controlling DC relay, cannot be reversed, otherwise the alarm signal and emergency stop protection circuit will be disabled.

•The electric device nearby the servo drive may have electromagnetic interference, please use the EMI suppression filter to reduce.

•Don't install in-phase capacitor, surge absorber, or EMI noise suppression in the power cable of the servo motor.

•When using a regenerative resistor, you should cut off power by regenerative abnormal signal. Otherwise, it may cause a fire by the overheated regenerative resistor.

•Do not modify the servo drive or servo motor by yourself.

3.8.1 Wiring diagram for EtherCAT control (CoE mode)

Note1: If an external power supply is used, VDD and COM+ cannot be connected. Note2: Refer to section 3.1.3 for wiring of regenerative resistor and brake unit. Note3: For DO Sink type or Source type, please refer to section 3.2.3 for wiring.

3.8.2 Wiring diagram for position control (Pr mode)

Note1: If an external power supply is used, VDD and COM+ cannot be connected. Note2: Refer to section 3.1.3 for wiring of regenerative resistor and brake unit. Note3: For DO Sink type or Source type, please refer to section 3.2.3 for wiring.

3.8.3 Wiring diagram for speed control (S mode)

Note1: If an external power supply is used, VDD and COM+ cannot be connected. Note2: Refer to section 3.1.3 for wiring of regenerative resistor and brake unit. Note3: For DO Sink type or Source type, please refer to section 3.2.3 for wiring.

4.Panel Display and Operation

This chapter describes the panel status of the Shihlin servo drive and its operation instructions.

4.1 Panel description

Name	Function			
Display	5-digit, 7-segment LED displays the monitoring values, parameter			
	numbers, setting values, etc.			
	It enters in or exit parameter mode, alarm mode, monitor mode and			
MODE key	setting mode.			
	When writing parameter, this key is use as shift function.			
UP key	scroll up the parameter code or setting value.			
Down key	scroll down the parameter code or setting value.			
SET Key	displays and stores the setting value.			
Charge LED	Indicates newer conseits when charging			
indicator				

4.2 Display procedure

Press "MODE" key once to shift to the next display mode. Refer to section 4.4 and later for related display. To read or set the extension parameters, make them valid with the PA42 setting.

Display process	Initial Screen	Function description	Reference
Status	F <u>P<u> </u></u>	Servo status display This message appears at power-on	Section 4.3
One touch auto-tuning	ALIT o	One touch auto tuning function	Section 4.4
Alarm	<u></u>	Display current alarm and history records	Section 4.5
Diagnosis	<u>rd-o</u> F	Sequence display, external signal display, DO forced output, test operation, inertia estimated, software version display.	Section 4.6
Basic parameters	P <u>80</u> 1	Display and setting of basic parameters.	
Gain/Filter parameters	P <u>60</u> 1	Display and setting of Gain/Filter parameters.	
Extended parameters	P <u>[</u>]	Display and setting of extended parameters.	Section
I/O setting parameters ↓ ● MODE	1 <u>36.</u> 9	Display and setting of I/O related parameters.	4.7
Pr related parameters	P <u>E</u> []	Pr mode related parameters group 1	
Pr related parameters	P F[] (Pr mode related parameters group 2	

4.3 Status display

- The servo operation status displays on the 5-digit 7-segment LED display.
- The content can be changed as request by pressing the UP or DOWN button.
- When the power is turned on, select the displayable symbol and press the SET button to show its data.
- The 7-segment LED display shows the last 5 digits of the 16 items data such as motor rotation speed.
- If the displayed value is 5 digits, the negative value is shown as 5 seven-segment display lightening decimal point. If the displayed value is 4 digits or less, the negative value is displayed on the leftmost seven-segment display.

Example

Examples are listed in the following table.

ltow	Status	Display	
item	Status	In 7-segment LED display	
Motor rotation anald	Forward rotation at 2500r/m	2500	
Motor rotation speed	Reverse rotation at 3000r/m	- 3000	
Load to motor inertia ratio	15.5 times		
Motor feedback pulse number(high 5-digit)	The value is 1234567890 High 5-digit → 1234.5		
Motor feedback pulse number(low 5-digit)	The value is 1234567890 Low 5-digit → 67890.		
Parameter wiring is completed	Write successfully		
Parameter writing failure	Writing fail when SON is ON.	Rewrite after turning the SON off.	
Parameter writing value is out of range	Parameter writing value is out of range	Rewrite parameter setting value	

PS: For detailed display of panel data values, please refer to section 4.7 for parameter value display examples.

Note: When setting parameters via panel, each parameter has the upper and lower limits.

(a) When the decimal data is modified, the modification should be within the upper and lower limits.

(b) When the hexadecimal data is modified, each Hex value has its upper and lower limits.

> Status display overview

The servo status that can be indicated are as follows:

Status display	Symbol	Unit	Content	Range
Motor feedback pulse number (High 5-digit) (Before E-gear ratio)	FPH.I	pulse	It displays motor feedback pulse number (High 5-digit)(Before E-Gear ratio). Ex: if the value is 123456789 pulse, it displays 1234 (Note 1).	-21474~ 21474
Motor feedback pulse number (Low 5-digit) (Before E-Gear ratio)	FPL.I	pulse	It displays motor feedback pulse number (Low 5-digit)(Before E-Gear ratio). Ex: if the value is 123456789 pulse, it displays 56789 (Note 1).	-99999 99999
Number of pulse commands input (High 5-digit) (before E-Gear ratio)	CPH.I	pulse	It displays the number of pulse commands input (High 5-digit) (Before E-Gear ratio). If the value is 123456789 pulse, it displays 1234 (Note 1).	-21474~ 21474
Number of pulse commands input (Low 5-digit) (Before E-Gear ratio)	CPL.I	pulse	It displays the number of pulse commands input (Low 5-digit) (Before E-Gear ratio). Ex: if the value is 123456789 pulse, it displays 56789 (Note 1).	-99999 99999
Deviation pulse number (Before E-Gear ratio)	E. I	pulse	It displays deviation number between pulse command and feedback pulse(Before E-Gear ratio) It displays the last 5 digits of the actual value.	-99999 99999
Motor feedback pulse number (High 5-digit) (After E-Gear ratio)	FPH.O	pulse	It displays motor feedback pulse number (High 5-digit) (After E-Gear ratio). If the value is 123456789 pulse, it displays 1234 (Note 1).	-21474~ 21474
Motor feedback pulse number (Low 5-digit) (After E-Gear ratio)	FPL.O	pulse	It displays motor feedback pulse number (Low 5-digit)(After E-Gear ratio). Ex: if the value is 123456789 pulse, it displays 56789 (Note 1).	-99999 99999
Number of pulse commands input (High 5-digit) (After E-Gear ratio)	CPH.O	pulse	It displays the number of pulse commands input (High 5-digit) (After E-Gear ratio). If the value is 123456789 pulse, it displays 1234 (Note 1).	-21474~ 21474

Status display	Symbol	Unit	Content	Range
Number of pulse commands input (Low 5-digit) (After E-Gear ratio)	CPL.O	pulse	It displays the number of pulse commands input (Low 5-digit) (After E-Gear ratio). If the value is 123456789 pulse, it displays 56789 (Note 1).	-99999 99999
Deviation pulse number (After E-Gear ratio)	E. O	pulse	It displays deviation number between pulse command and feedback pulse (After E-Gear ratio) It displays the last 5 digits of the actual value.	-99999~ 99999
Pulse command input frequency	CPF	kHz	It displays external pulse command input frequency.	-6000~ 6000
Current motor speed	R	rpm	it displays current motor feedback speed.	-6000~ 6000
Effective load rate	J	%	It displays the load ratio of continuous torque, and take rated torque as 100%.	0~300
Peak load rate	В	%	It displays the maximum peak torque occurring at 100% of the rated torque, showing the highest value in the last 15 seconds.	0~300
DC bus voltage	Pn	V	It displays the P-N voltage of the main circuit. "Lo-dC" is displayed if it is less than normal value.	0~500
Load to motor inertia ratio	dC	times	It displays load/motor inertia ratio.	0.0~120.0
Instantaneous torque	т	%	It displays the Instantaneously generated torque. Taking the rated torque as 100%, the generated torque is displayed in real time.	0~100
Regenerative load ratio	L	%	It displays the power ratio of allowable regenerative power in %.	0~100
The absolute pulse number relative to encoder Z phase	ZP	pulse	It displays the absolute pulse number relative to encoder Z phase, Z phase is 0. It is +5000 or -5000 pulses when the motor rotates in the forward or reverse direction as below picture shows:	-4999 ~ 5000

Note 1: When the panel is displaying the value, pressing the SET key will clear the number of pulse command input, motor feedback pulse, and pulse deviation (before and after the electronic gear ratio). This function is the same as the communication address 0x0951.

> Change the display content

By changing parameter PA01, you can change the status of the 7-segment LED, and the initial display items is changed according to the control mode.

Control mode	Display items
Position	Motor feedback pulse number (Low 5-digit)
Position/speed	Motor feedback pulse number (Low 5-digit)/Current motor speed
Speed	Current motor speed

4.4 One-touch tuning function

Name	Display	Description
One-touch		You can perform One-touch Tuning.
Tuning		For details, refer to section 6.2.

4.5 Alarm mode

It indicates the current alarm and alarm history.

The last 2 digits show the number of alarms. (The following is an alarm diagram. For a detailed description of the alarms, refer to Chapter 12)

Name	Display	Description	
Current	AF	No alarm occurs	
alarm		The screen flashes when an over voltage (AL01) alarm occurs.	
	80 0 H	The last alarm in the past is over voltage (AL.01).	
	50 / R	The 2nd alarm in the past is under voltage(AL.02).	
-	EC 58	The 3rd alarm in the past is over current(AL.03).	
	83 84	The 4th alarm in the past is regeneration error(AL.04).	
Alarm record	84 85	The 5th alarm in the past is overload(AL.05).	
	85 86	The 6th alarm in the past is over speed(AL.06).	
	RE C7	The 7th alarm in the past is abnormal pulse control(AL.07)	
	87 88	The 8th alarm in the past is excessive deviation of position (AL.08).	
	88 89	The 9th alarm in the past is serial communication error (AL.09)	

Function when alarm occurs:

A: Regardless the mode, the screen can display the current alarm in any mode.

B: Other screens can still be read when an alarm occurs, and the fourth LED decimal point will blink (counting from the right) in this case.

C: After troubleshooting, the alarm can be cleared by one of the following methods:

- (a). Cycle the power.
- (b). Press SET key in the alarm screen.
- (c). Turn on the reset signal(RES).

D: Use UP or DOWN key to move to the next alarm record.

4.6 Diagnosis mode

-					
	4	I			
			norato in	algannele	mode
				ulauliusis	IIIUUUE

Name	Display	Description
Control status	rd-of	Servo is not ready yet. It means the servo is initializing, alarm occurs, or SON terminal is off.
	rd-on	Servo is ready. It means the drive is ready for operation.
External I/O signal		It indicates the ON/OFF status of external I/O. The upper part of each segment shows the input signal, and the lower part shows the output signal. The I/O signal can be changed by the parameters of PD group.
DO forced output	do-on	DO signal can be forced ON/OFF.
JOG test operation	FESF (When there is no command from an external device, JOG can be executed.
Positioning test operation	[E5[3	When there is no command from an external device, positioning operation can be executed once. This function is not available in the panel, you should connect it to the communication software by RS-485/USB to test.
Inertia estimation test operation	58553	It enables automatic load inertia ratio and the associated gain value estimation. This operation is not available in the panel, you should connect it to the communication software by RS-485/USB to test.

Name	Display	Description		
Auto-offset of analog input	H { []	 When setting the analog speed command or analog speed limit, if the motor still rotates slowly when the voltage is adjusted to 0V by an external analog circuit, the offset can be set automatically. During the operation, PC26 will be set automatically. Please operate as per following steps: 1).Enter the automatic offset screen of the diagnosis mode. 2).Press the SET key. 3).Press the UP / DOWN key and select 1 4).Press SET key. 		
Software version	SP102	It indicates the version number of the SERVO software.		

The following section will introduce how to use the diagnosis mode.

4.6.1 Indication of external I/O signals

This display is used to verify the ON/OFF status of the SERVO AMP digital I/O signals.

(1) Operation

When the power is applied, you can use the MODE button to go to the diagnostic screen.

(2) Display content

Display of I/O pin definition

The above figure shows ON/OFF in a 7-segement LED, the upper part is the input signal (DI1~DI5), the lower part is the output signal (DO1~DO3) and OP. When OP is ON, it means that the motor is in the Z-phase position.

4.6.2 DO forced output

The output signals which does not affect SERVO status can be forced ON/OFF. This function can be used for output signal wiring inspection, etc.

- ★ When it is confirmed that there is no external command device and no alarm message, positioning test operation can be performed.
- ★ Ensure that SON-SG is open-circuited during the test.

Operation

When the power is applied, you can use the MODE button to go to the diagnostic screen. It indicates the screen of the display after power-on, press the "MODE" key to go to the diagnostic screen:

4.6.3 JOG operation

- ★ JOG operation can be performed when no alarm or warning message occurs.
- ★ Ensure that SON-SG is open-circuited during the test.

Set JOG speed command by PC04, and set the acceleration time constant by PC01 and the deceleration time constant by PC02. Below picture shows the display screen after power-on. Select JOG operation, positioning test operation, test estimation inertia analysis operation in following sequence.

Press the MODE button to go to the diagnosis screen.

(1) Operation

To perform JOG operation, connect VDD and COM+ if internal power supply is used between EMG-SG. Hold the UP or DOWN button to run the motor and release it to stop. The operation condition can be changed by communication software. The initial operating conditions and setting ranges are shown in the table below.

ltem	Setting value	Default value	Setting range
Rotation speed		200	6000-6000
[r/min]	PC04	500	-0000~0000
Acceleration and			
deceleration time	PC01, PC02	200	0~20000
constant			

Note: The JOG speed can be set by PC04 in panel. When using the communication software, the speed setting value is determined by the other communication address.

Button description is as follows:

Βι	utton	Content	
		Hold UP button to rotate in CCW	
	UP	direction. Release to stop.	
		Hold DOWN button to rotate in CW	
	DOWN	direction. Release to stop.	

When using the communication software for JOG operation, the servo motor will decelerate to stop if the communication cable is disconnected.

(2) Status display

You can verify the servo status during JOG operation.

Press the MODE button to display the status when the JOG is ready. Execute JOG operation by UP or DOWN button. Pressing the MODE button once will move to the next screen, and it will return to the JOG operation screen after one cycle. Refer to section 4.3 for details on the status display.

The status screen cannot be changed by the UP and DOWN buttons during JOG operation.

(3) Exit JOG operation

During JOG operation, turn off the power or hold the SET button for more than 2 seconds in the test operation screen to exit the JOG operation mode.

4.6.4 Positioning test operation

- ★ You can utilize this function after connecting to Shihlin communication software by USB.
- ★ Make sure that there is no external command device and no alarm message from the servo before positioning test operation.
- ★ Ensure SON is OFF during the test.

Operation

Make sure the motor is wired correctly before the positioning test operation. Select positioning test operation in Shihlin communication software and press Forward or Reverse key, the motor will rotate as per the setting and then stop. The rotation setting can be changed by Shihlin communication software. The initial value and setting range show in the following table.

Item	Default value	Setting range
Motor speed(rpm)	200	0~6000
Acceleration and deceleration time(ms)	1000	0~20000
Number of revolutions(10kpulse)	10	0~512
Number of pulses(pulse)	0	0~2 ²² -1

Description of buttons:

Button Name	Function
Forward	Press the button to rotate the motor in the forward direction.
Reverse	Press the button to rotate the motor in the reverse direction.
Pause	Press Pause to stop the running motor. The motor will run the
	remaining distance if the same button is pressed.
	If the pause is pressed twice consecutively during operation, the
	remaining distance will be cleared.
Close	Turn off the positioning test operation function.

If the communication cable is disconnected during operation, the motor will stop immediately.

When the communication software enters the positioning test mode, the panel will show as below:

4.6.5 Inertia estimation and tuning by communication software

- ★ The positioning test operation can only be used after connecting the Shihlin communication software via USB.
- ★ Make sure that there is no external command device and no alarm message from the servo before positioning test operation.

Operation

Before running the inertia estimation analysis, make sure the motor is wired correctly and then select the auto-gain tuning function in the Shihlin communication software.

The instructions for auto-gain tuning function are as follows:

(1) Check Auto Tuning Control Panel option.

(2) Set speed acceleration/deceleration time, S acceleration/deceleration time, and JOG speed value, if there is no alarm, click [Setup] to modify the parameters mentioned above.

(3) Click [Servo ON] then the motor would be magnetized.

(4) Click the JOG \leftarrow or JOG \rightarrow key to rotate the motor forwardly or reversely, when it reaches the destination, click Position 1, then click JOG key and set Position 2.

(5) After Position 1 and Position 2 are set, click Start key to run the motor between the 2 position cyclically for the inertia and gain estimation.

(6) During operation, you can directly set the response level in menu if the response is not enough, but it is not recommended to set the response too large at once, and it should increase gradually.

(7) If the load inertia ratio is converged, or the machine features meet requirement, you can press Stop to complete the preliminary inertia estimation and gain tuning.

(8) Uncheck Auto Tuning Control Panel option.
The gain value will be estimated automatically during the process, and the following table shows the related parameters:

Name	Name Abbr	Pr.No	Setting range	Unit	Default value	Control mode
Resonance suppression low-pass filter	NLP	PB03	0~10000	0.1ms	10	CoE, Pr, S
Position feed-forward gain value	FFC	PB05	0~200	%	0	CoE, Pr
Load inertia ratio	GD1	PB06	0~1200	0.1 times	70	CoE, Pr, S
Position loop gain	PG1	PB07	4~1024	rad/s	45	CoE, Pr
Speed loop gain	VG1	PB08	40~9000	rad/s	183	CoE, Pr, S
Speed integral gain value	VIC	PB09	1~1000	ms	34	CoE, Pr, S

When the communication software enters the inertia estimation mode, the panel will display as below:

---- This screen display means the servo enters inertia estimation/analysis mode

LED blinks

4.7 Parameter mode

4.7.1 16 Bit parameter setting instruction

Some parameter changes become valid after power cycling.

(1) Operation instruction

The following is an example to illustrate when the control mode (PA01) is changed to speed control mode, how to operate after power cycling.

Example 1: Control mode (PA01) is changed to the speed control mode.

Use the MODE button move to the PA01 screen.

Indicates PA01

 $\odot_{\text{UP DOWN}} \circ$ Press UP or down button to change PA01

• Press SET button twice

The rightmost parameter shows on the LED keeps blinking

● Press UP button twice

Change the setting value during blinking ^(O) ^(O) ^(O) Use UP Down button to change the setting ^(O) ^(O)

Parameter setting is completed

Press the UP/ DOWN button to move to the next parameter.

PA01 changes become valid after power cycling.

• The MODE key is use as shift function when setting the parameters.

Next section will introduce how to use the MODE, UP and DOWN buttons to operate.

4.7.2 32 Bit parameter setting instruction

• Decimal parameter reading and writing method (positive number)

Example: PA19 is 1234567, then to change to 1434567.

Press "SET" once.

The lower 5 digits of PA19 are shown and the lowest decimal point indicates that this is low screen.

Press "MODE" once

The higher 2 digits of PA19 are shown and the second decimal point indicates that this is high screen.

Press "MODE" once

The screen is returned to the low screen.

Press "SET" once

The lowest digit display would be flickering.

Press "MODE" for 5 times.

The flickering digit would shift left to the second high digit.

Press "UP" twice.

The flickering digit would be changed to "4".

Press "SET" once to store the modification.

Decimal parameter reading and writing method (negative number)

Example: PA19 is 1234567, then to change to -1434567.

Press "SET" once.

The lower 5 digits of PA19 are shown and the lowest decimal point indicates that this is low screen

Press "MODE" once.

The higher 2 digits of PA19 are shown and the second decimal point indicates that this is high screen.

Press "SET" once.

The lowest digit of this screen would be flickering.

Press "MODE" twice.

The flickering digit shifts to the highest digit and the "-" sign appears.

Press "SET" once.

This screen will show "-1.2". The PA19 is -1234567 now.

Press "MODE" once.

Return to the screen of -1234567 lower 5 digits. The left 2 decimal points indicate that this number is negative.

Press "UP" once.

Scroll to the next parameter. (PA20)

• Hex parameter reading and writing method

Example: PE01 is 0x3760135 and then to change to 0x03740135.

Press "SET" once.

The lower 4 digits of PE01 are shown and the underline of highest digit indicates that this is low word.

Press "MODE" once.

The higher 4 digits of PE01 are shown and the up segment of highest digit indicates that this is high word.

Press "MODE" once.

It shows the lower word again.

Press "SET" once.

The lowest digit of PE01 would be flickering.

Press "SET" 4 times.

This flickering digit shifts to the lowest digit of high word.

Press "DOWN" twice.

The display shows the modification.

Press "SET" once to store the modification.

5. Running Operation

5.1 Checklist before running

Before running the motor, you should check the following items in detail to avoid unnecessary damage to the motor.

- Whether the power terminals (R, S, T, L1, L2) of the servo drive are wired correctly.
- The power terminals (U, V, W) of the servo motor and the U, V, W wiring of the servo drive should be consistent.
- Check if the servo drive is properly grounded.
- Check if any conductive or inflammable material in or nearby the drive.
- Make sure the voltage of the power supply is correct.
- Check if the control switch is OFF.
- Do not apply heavy stress on the drive or wiring.
- Use twisted wires to connect the regenerative resistor.
- Check if the drive is visibly damaged.

•Do not operate the switch with wet hands, otherwise it may cause electric shock.

•Check each parameter before running, otherwise it may cause CAUTION unexpected motions.

•Do NOT touch the heat sink, regenerative resistor, servo motor and other components during power-on or in a short period of time after power off, because it may get hot and cause injury.

5.2 Test without load

Please remove all the loads connected to the servo motor first before test (e.g., couplings and related accessories on the machine or the servo motor shaft, etc.). Confirm the servo motor can operate normally according to normal operation procedures, and then connect the loads to the servo motor again. The following describes the test of the motor without load.

5.2.1 JOG test without load

- ★ Make sure there is no alarm or warning message from the servo before JOG test.
- ★ Ensure that SON-SG is open-circuited (SON OFF) during the test.

You can perform the no-load JOG operation by the drive panel or Shihlin communication software, which is to confirm whether the motor speed and direction are as expected. The motor speed cannot be modified by panel during JOG test, it only can be modified by Shihlin communication software, and it is recommended to run JOG test at a low speed. The JOG operation by panel will be introduced as follows:

Step 1: Connect servo drive and motor correctly, and then power on the servo drive.

Step 2: Call the diagnosis screen by the MODE button, and then press the UP button 3 times to display the TEST1 (JOG mode). Hold SET button for 2 seconds to move to d-01. screen (JOG test operation).

Press the "MODE" to call the diagnostic screen after power on.

Step 3: Run the JOG test. Press the UP button to run the motor in CCW direction, and press DOWN button to run the motor in CW direction. Release the button to stop. The running speed of JOG test can be modified by PC04.

When using Shihlin communication software, the setting value and range are as follows:

og Test			
Motor Speed:	200	rpm	G Forward
	[1-6000]		Reverse
Accel/Decel Time:	1000	ms	
	[0-20000]		😢 Close
			?

Note: When using the communication software, if the communication cable is disconnected during JOG test, the servo motor will decelerate and stop.

The description of buttons is as below:

Button	Function
Forward	Press and hold the button to runs the motor in CCW
Reverse	Press and hold the button to runs the motor in CW
Close	Stop JOG test

Step 4: if the JOG operation is completed, turn off the power or hold the SET button for more than 2 seconds in the test operation screen (d-01.) to exit the JOG mode.

5.2.2 Positioning test without load

For positioning test without load, please use USB connect to Shihlin communication software to check whether the motor speed and direction are as expected. It is recommended to run at low speed. You need to set the number of revolutions and pulses, For example: if the motor takes 22-bit pulse(that is 4194304 pulse) to rotate 1 circle, the pulse number setting should be 44040192 pulse to reach 10 and 1/2 circles. The following content explains positioning operation steps:

- Step 1: Connect the servo drive and servo motor correctly, and then turn on the power of servo drive.
- Step 2: Connect the computer to the CN4 terminal of the servo drive with a standard Mini USB cable, and select the USB communication and the correct address by Shihlin communication software.
- Step 3: Select Test/Position Test at the top of the communication software and enter the positioning test screen.
- Step 4: Run the positioning test. First set the number of revolutions and pulse number. When clicking the Forward button, the servo motor will rotate in the CCW direction until reaches target number of revolutions and pulses. On the other hand, when the Reverse button is clicked, the servo motor will rotate in the CW direction until reaches target number of revolutions and pulses. The initial conditions and setting range of operation are as follows.

osition Test			
Motor Speed:	200	rpm	G Forward
	[1-6000]	_	
Accel/Decel Time	1000	ms	Reverse
	[0-20000]		Pause/Clear
Move Distance			
Pulse	е		
	0		
[0~21474	83647]	2	

The description of buttons is as below:

Button	Content
"Forword"	Press it once, the motor will run in CCW direction until
Forward	reaches target number of revolutions and pulses.
"Povorao"	Press it once, the motor will run in CW direction until
Reverse	reaches target number of revolutions and pulses.
	Press it once, the motor will stop temporarily when the
	motor does not reach the target number of revolutions
"Dauco/Cloar"	and pulses. If you press the same operation button again,
Pause/Clear	the motor will run the remaining distance.
	If you press the pause button twice, the remaining
	number of revolution and pulse will be cleared.
"Close"	Stop the test

Step5: If the positioning test is completed, press the Close button to exit.

5.3 Parameter setting and operation in speed mode

(1) Power on

After the servo drive is powered on, you should switch off the SON signal. The panel of the servo drive automatically displays servo motor rotation speed after 2 seconds.

(2) Test Operation

Use JOG test to verify the servo is running normally.

(3) Parameter setting

After wiring is completed in speed mode, the following parameters need to be set before performing basic speed control.

Pr.No	Name	Setting value	Content
PA01(Note 1)	Control mode option	0002	Speed mode
PC05	Internal speed command 1	1000	Set to 1000 rpm
PC06	Internal speed command 2	1500	Set to 1500 rpm
PC07	Internal speed command 3	2000	Set to 2000 rpm
PC01	Acceleration time constant	1000	Set to 1000ms
PC02	Deceleration time constant	500	Set to 500ms
PC03	S-curve acceleration/deceleration	0	N/A
	time constant		
PD15(Note1)	External input terminal filter time	0002	Filter time constant for
	selection		external terminals are
			4ms

Note 1: Parameter changes become valid after power cycling.

(4) Servo ON

Below is the procedure to execute SERVO ON.

- (a) The control power of the servo is turned on.
- (b) Turn on the SON signal(SON-SG is short-circuited). Servo is ready when SON is ON, and servo motor switches to SERVO LOCK immediately.

(5) Start

Select the motor speed by SP1 or SP2 signal, and the options are as follows:

(Note)External input signal		Spood command	
SP2	SP1	Speed command	
0	0	Speed command is 0	
0	1	Inner speed command 1(PC05)	
1	0	Inner speed command 2(PC06)	
1	1	Inner speed command 3(PC07)	

After selecting the speed, the servo motor rotates when ST1 or ST2 is ON. and the instruction of forward and reverse rotation is shown below:

(Note)Rotation dire	Rotation direction	
ST2	ST1	Inner speed command
0	0	Stop(servo locked)
0	1	CCW
1	0	CW
1	1	Stop(servo locked)

NOTE: 0: OFF(STx-SG is open-circuited) 1: ON(STx-SG is short-circuited)

First, check the direction of rotation at low speed, and check the input signal if needed. You can monitor the servo motor speed, command pulse number, load ratio, etc. on the status display screen.

You can use the auto-tuning function or manually set the controller parameters, but you should note the resonance phenomenon caused by the machine, and adjust PA03 to get the best response of the servo motor speed.

(6) Stop

You can follow below steps to stop the motor.

(a) Servo ON signal (SON) is off

The base circuit is disconnected and the servo will switch to an unlocked free run state.

(b) Alarm occurs

When alarm occurs, the base circuit is disconnected and the dynamic brake is activated to stop the servo motor immediately.

(c) Emergency (EMG) is OFF

The base circuit is disconnected, and the dynamic brake is activated to stop the servo motor immediately. and the ALARM appears.

(d) The LSP and LSN is OFF.

If LSP is ON, motor rotates forwardly. If LSN is on, the motor rotates reversely. and if they are OFF, it stops the servo motor, and the servo is locked.

(e) When both ST1 and ST2 signal are turned ON or OFF at the same time, the servo decelerates to stop.

6.Tuning Procedure

•Please do not perform extreme adjustments and changes in parameters, which may cause unstable running.

6.1 Tuning method and type

Auto-gain tuning function can quickly and accurately estimate load inertia and search for servo gain under different loads. If the auto-gain tuning mode cannot meet the requirement, manual mode can be used.

The description of gain tuning mode are as follows:

Tuning mode	PA02 setting value	Load inertia estimation method	Auto-estimate parameters	Manually set parameters
				GD1(PB06)
Manual mode	0000	Fixed as value of		PG1 (PB07)
(PI control)	0001	PB06		VG1 (PB08)
				VIC (PB09)
			GD1(PB06)	
Auto mode 1	0002	Continuously	PG1 (PB07)	
		estimation	VG1 (PB08)	ATOL(FA 03)
			VIC (PB09)	
		Fixed as value of	PG1 (PB07)	ATUL(PA03)
Auto mode 2	Auto mode 2 0003		VG1 (PB08)	GD1(PB06)
		FBUO	VIC (PB09)	
Internalation mode		Continuouoly	GD1(PB06)	ATUL(PA03)
Interpolation mode	0004	continuousiy	VG1 (PB08)	PG1 (PB07)
	e	esumation	VIC (PB09)	
Internalation made		Fixed as value of	VG1 (PB08)	ATUL(PA03)
	0005		VIC (PB09)	GD1(PB06)
۷		FDUU		PG1 (PB07)

Parameter PA02 cannot be written when SON-SG is short-circuited, please open SON-SG circuit before setting.

Please refer to the below table for recommendations on the tuning sequence and mode.

If the servo is being used for the first time, a JOG test is required to confirm no abnormal before using the auto-tuning function. In auto-tuning mode, the servo needs to accelerate/ decelerate for several times, and after the inertia ratio estimation turns to a steady state, the purpose of inertia ratio estimation and bandwidth search can be achieved.

6.2 One-touch tuning function

The one-touch gain tuning function can be performed by using the communication software or the panel, and the related parameters which can be set automatically by the one-touch tuning function are shown in the table below.

Pr.No	Name Abbr	Parameter name
PA03	ATUL	Auto-tuning response level setting
PB01	NHF1	Frequency of machine resonance suppression filter 1
PB02	NHD1	Attenuation rate of machine resonance suppression filter 1
PB03	NLP	Time constant of resonance suppression low-pass filter
PB06	GD1	Load to motor inertia ratio
PB07	PG1	Position loop gain
PB08	VG1	Speed loop gain
PB09	VIC	Speed integral gain
PB21	NHF2	Frequency of Machine resonance suppression filter 2
PB22	NHD2	Attenuation rate of Machine resonance suppression filter 2
PB27	ANCF	Auto resonance suppression mode setting
PB28	ANCL	Auto resonance detection level
PB29	AVSM	Auto low-frequency vibration suppression mode setting
PB30	VCL	Low-frequency vibration detection level
PB31	VSF1	Low-frequency vibration suppression frequency 1
PB32	VSG1	Low-frequency vibration suppression gain 1
PB33	VSF2	Low-frequency vibration suppression frequency 2
PB34	VSG2	Low-frequency vibration suppression gain 2
PB35	FRCL	Friction compensation level
PB36	FRCM	Friction compensation smoothing time constant
PB45	NHF4	Frequency of machine resonance suppression filter 4
PB46	NHD4	Attenuation rate of Machine resonance suppression filter 4

6.2.1 One-touch tuning procedure

One-touch tuning has simple operation procedure and offers 2 ways to perform it. In addition, This function can only be performed when the servo system is in normal operation.

6.2.2 One-touch tuning display conversion and operation steps

6.2.2.1 Operating with communication software

(a) Three response modes can be selected in the one-touch tuning window from the communication software.

IneTouch		
Return to value before ac Retur	rn to intial value	
Use the OneTouch fund	ction when servo moto	r operating.
Response mode ——		1
O High mode		
Response mod	e for hi <mark>g</mark> h rigidity mach	iines.
Basic mode		Start 0
Response mod	e for standard machin	es.
O Low mode		
Response mod	e for low rigidity machi	nes.
Error status	· · · · · · · · · · · · · · · · ·	
Error code	_	Error List
_ Adjustment result]
Setting time		ms

You can refer to below table for response mode selection.

Response mode	Description
High mode	For high rigidity systems
Basic mode	For standard systems.
Low mode	For low rigidity systems.

(b) One-touch tuning execution

After selecting the response mode, press Start to execute immediately.

OneTouch	
Return to value before ac Return	to intial value
Use the OneTouch funct	ion when servo motor operating. ③
Response mode	
○ High mode	
Response mode	for high rigidity machines.
 Basic mode Response mode 	for standard machines.
O Low mode Response mode	for low rigidity machines.
Error status	Error List
Adjustment result	
Setting time	ms
Overshoot amount	pulse

If there is an error code, it will be displayed on the error status of the window.

The progress of the one-touch tuning execution will be presented in the status window, and the execution completion will be 100%.

Progress	
Progress in implementation:	20%
Stop	

(c) Clear and Restore

This function provides two ways for clearing and restoring tuning-related parameters.

I. Clear: Gain parameters are returned to the factory default values.

II. Restore: Gain parameters are restored to the previously value before one-touch tuning process.

OneTouch		
Return to value before ac Return	n to intial value	
Use the OneTouch func	tion when servo motor o	perating. 🥐
Response mode		
O High mode		
Response mode	for high rigidity machine	S.
Basic mode Response mode	for standard machines.	Start 💿
O Low mode Response mode	for low rigidity machines	κ
Error status	-	Error List
Adjustment result		
Setting time		ms
Overshoot amount		pulse

6.2.2.2 Operating with Panel

- (a) There are two ways to access the one-touch gain tuning function from the panel:
 - I. Press the MODE key move to the one-touch tuning screen (AUTo is displayed), then hold the SET key for 2 seconds and the screen flashes.

II. In any screen, hold the MODE and UP buttons at the same time for more than 3 seconds to enter the AUTo screen and the screen flashes.

(b) Press UP or DOWN key to select one-touch tuning response mode

(c) After selecting the response mode and pressing the SET button, One-touch tuning function will be executed and the panel will show the progress.

(d) If you want to terminate the process during tuning, press the SET key to stop, the panel display and the troubleshooting process are as follows:

(e)

(f) If an error occurs during the tuning process, the panel display and troubleshooting methods are as follows:

- (g) There are two modes for clearing and restoring One-touch tuning related parameters:
 - I. Restore to default value (clear mode)

II. Restore to the previous value (back mode).

Press the MODE button to go to the One-touch tuning screen (displaying AUTo), then press UP or DOWN button to select clearing or restoring mode, press SET key for 2 seconds, the servo will execute the setting after blinking for 3 seconds.

6.2.3 List of one-touch tuning error codes and troubleshooting methods

Display	Error code name	Description	Troubleshooting Method
C000	Cancellation	Press the stop button or SET	
C001	Position overshot excess	Position overshot exceeds [PA12_INP] position attained range.	Increase [PA12_INP] setting value.
C002	SON-OFF	Execute one-touch tuning when SON is OFF.	Execute one touch tuning when SON is on.
		Try to turn SON OFF during one-touch tuning.	Don't turn SON OFF during tuning.
C003	Control mode abnormal	Execute one-touch tuning in torque mode.	Switch to position or speed mode.
		Switch control modes during one-touch tuning.	Do not switch mode during tuning.
C004	Time out	Operation cycle time exceeds 30 seconds(the interval between current start command and next start command)	Set the rotation cycle to less than 30 seconds.
		Motor speed is too low	The motor speed should be more than 100rpm.
		Operation interval is too short	Operation interval should be more than 500ms.
C005	Load inertia estimation abnormal	Load inertia estimation failure during one-touch tuning When vibration affects the load inertia estimation or when the inertia ratio changes drastically.	 Acceleration and deceleration times need to be less than 2 seconds for 2000rpm and less than 3 seconds for 3000rpm. The motor speed must be above 250rpm. The load inertia must not exceed 100 times the rotor inertia of the motor. This mode is not suitable for applications where external forces or inertia ratios change drastically. The acceleration and deceleration torque are 10% or more of the rated torque. Set to semi-auto gain tuning mode without load inertia estimation, and then perform one-touch tuning again. Select [PA02_ATUM]
C00F	One-touch	In [PA38 AOP3] setting the	load inertia ratio. modify IPA38_AOP31 setting
	tuning function invalid	one-touch tuning function is disabled.	

6.3 Auto-tuning mode

The auto-tuning function estimates the load inertia ratio for the servo drive in real time, and uses this value to automatically set the optimal gain (GAIN value). With this auto-tuning function, you can perform servo drive gain tuning in an easy and fast way.

6.3.1 Auto-tuning function

(a) .Auto-gain tuning mode 1

This mode is the servo factory default setting, if the servo is set to this function (PA02=0002), the load inertia ratio will be continuously evaluated and the servo gain value will be set automatically, the only parameter that can be manually modified is PA03.

The related parameters and settings are as follows:

Pr.No	Name Abbr	Name	Modifiable or auto-estimated
PA03	ATUL	Auto-tuning response level setting	Modifiable
PB06	GD1	Load to motor inertia ratio	Auto-estimate
PB07	PG1	Position loop gain	Auto-estimate
PB08	VG1	Speed loop gain	Auto-estimate
PB09	VIC	Speed integral gain	Auto-estimate

When the servo is set to auto-gain tuning mode 1, the following conditions must be met.

① The acceleration and deceleration time should be less than 2 seconds when reaching 2000rpm and less than 3 seconds when reaching 3000rpm.

- ② The motor speed must be higher than 250rpm.
- ③ Load inertia must not exceed 100 times the rotor inertia of the motor.

④ This mode is not suitable for applications where the external force or inertia ratio changes drastically.

(5) Acceleration and deceleration torque are 10% or more of the rated torque.

(b).Auto-gain tuning mode 2

If auto-gain tuning mode 1 cannot estimate the inertia correctly, you can use auto-gain tuning mode 2. By setting PA02 to 0003 in this mode, the load inertia ratio will not be estimated automatically, you should manually set PB06.

Pr.No	Name Abbr	Name	Modifiable or auto-estimated
PA03	ATUL	Auto-tuning response level setting	Modifiable
PB06	GD1	Load to motor inertia ratio	Modifiable
PB07	PG1	Position loop gain	Auto-estimate
PB08	VG1	Speed loop gain	Auto-estimate
PB09	VIC	Speed integral gain	Auto-estimate

The related parameters and settings are shown below:

Please refer to the following key points to enable the auto-gain tuning mode.

① When setting to the auto-gain tuning mode 1, the motor accelerates or decelerates at first, and then the inertia ratio is estimated according to motor current and speed, this value will be updated to PB06 and written into the EEPROM (every 30 minutes).

2 If the load inertia ratio is known, or if the inertia ratio cannot be accurately estimated (in cases where the inertia ratio changes drastically), you can set PA02 to auto-gain tuning mode 2, and manually write the known inertia ratio into PB06. During the time, the gain value will be kept searching.

③ The controller gain will be optimized according to the inertia ratio and response level setting value during acceleration and deceleration. When the power is turned on, the gain search result is written to the EEPROM every 30 minutes, and it will be used as the initial value for tuning.

Shihlin servo has set auto-gain tuning mode 1 as default setting, so that the controller gain will be set automatically as long as the motor is accelerated or decelerated. You only need to manually set the required response level to complete the whole process, the sequence is shown in the figure below.

6.3.1.2 Manual Tuning Mode

PA03 (Response Level Setting) is used to set the overall response level of the servo, which affects the bandwidth of the entire system. Increasing response setting will improve the command traceability and shorten the settling time. But if the setting is too high, the system maybe vibrate. It is recommended to set the response level within the non-vibrate range.

If the machine resonates at the required bandwidth and you do not want to change the bandwidth, then the mechanical resonance suppression filter (PB01, PB02, PB21, PB22) and the resonance suppression low-pass filter (PB03) can be used to suppress the resonance effectively. Response can also be set to a higher setting at this time. For the mechanical resonance suppression low-pass filter, refer to section 7.2.5.

Parameter PA03								
	0	0	0	5				
				7				

Response level setting

Setting	Response level	Speed loop		Setting	Response level	Speed loop
value		frequency(Hz)	; Hz) value			frequency(Hz)
1		10.0		17		67.1
2		11.3		18		75.6
3		12.7		19	Basic response	85.2
4		14.3		20	•	95.9
5		16.1		21	High response	108.0
6		18.1		22		121.7
7		20.4		23		137.1
8		23.0		24		154.4
9	Basic rosponso	25.9		25		173.9
10		29.2		26		195.9
11		32.9		27		220.6
12		37.0		28		248.5
13		41.7		29		279.9
14		47.0		30		315.3
15		52.9		31		355.1
16		59.6		32		400.0

For the response level setting, it is recommended to begin with low response level and slowly adjust to a higher level. If the initial value is set too high, the possibility of resonance will be greatly increased.

The applicable load inertia ratio is just for reference, it needs to adjust according to different system environments.

6.3.2 Tuning in manual mode

If the auto-tuning function cannot meet the requirement, the manual mode can be used.

Adjustment of manual mode

In position and speed mode, the rigidity of the machine and the environment greatly impact the bandwidth selection. You will set a high frequency system response to get high machining accuracy, but high response level might cause mechanical resonance. Therefore, highly response applications require highly rigid machines to avoid machine resonance.

When the response bandwidth is unknown, you should set a small gain value first, gradually increase it until the resonance occurs, and then decrease the gain setting. Parameters value for each control mode can be found in the following table:

Name	Name Abbr	Pr.No	Setting range	Unit	Default value	Control mode
Resonance suppression low-pass filter	NLP	PB03	0~10000	0.1ms	10	ALL
Position feed-forward gain	FFC	PB05	0~200	%	0	Pt, Pr
Load to motor inertia ratio	GD1	PB06	0~1200	0.1 times	70	ALL
Position loop gain	PG1	PB07	4~1024	rad/s	45	Pt, Pr
Speed loop gain	VG1	PB08	40~9000	rad/s	183	ALL
Speed integral gain	VIC	PB09	1~1000	ms	34	ALL
Speed feed-forward gain	VFG	PB10	0~200	%	0	S, T

Position loop gain(PG1)

This parameter determines the response of the position loop. The larger PG1 setting value is, the higher the response frequency of the position loop will be. It means the better position command response, the shorter settling time and the fewer position deviation. However, if the value is too large, it may cause vibration or overshoot. The calculation of the setting is as follows:

 $PG1 \text{ setting value } \leq \frac{VG1 \text{ setting value}}{1 + \text{ratio of load inertial to motor shaft}} \times \frac{1}{4}$ $PG1 \text{ setting value} \approx \text{speed loop bandwidth } \times \frac{1}{4}$

Speed loop gain(VG1)

This parameter determines the response level of the speed loop. The larger the VG1 setting value is, the higher the response frequency and better speed command response will be. But too large setting may cause resonance. The speed loop gain setting is usually 4~6 times of the position loop gain. When the position loop gain is larger than the speed loop gain, the machine may resonate or overshoot. The calculation of the speed loop gain is shown in the following formula:

Speed loop response frequency(Hz)= $\frac{VG1 \text{ setting value}}{(1 + \text{ ratio of load inertial to motor shaft}) \times 2\pi}$

Speed integral gain(VIC)

This parameter is to clear fixed deviation of the corresponding command. The smaller the VIC setting value is, the better to clear fixed deviation will be. However, in the case of large load inertia and mechanical vibration, small setting may easily generate resonance. You can refer to the following formula for the setting value:

VIC setting value(ms) $\geq \frac{3000 \sim 5000}{VG1 \text{ setting value } / (1 + GD1 \text{ setting value } \times 0.1)}$

Low-pass filter for resonance suppression(NLP)

The larger the load inertia is, the lower the bandwidth of the system will be. If you want to maintain a higher bandwidth, you needs to increase the gain value. However, Increasing the gain value might cause mechanical resonance. To avoid this, you can use resonance suppression low-pass filter parameters to eliminate the resonance. The larger the setting is, the lower high-frequency noise will be. But too large setting will also cause the instability of the entire system, because the large setting will worsen the phase lag. The recommended setting value can be referred to the following formula:

NLP setting value(Hz) =
$$\frac{\text{VG1 setting value *10}}{2\pi * (1 + \text{GD1 setting value *0.1})}$$

Position feed-forward gain(FFC)

It can reduce position deviation and shorten the position settling time. But too large setting will cause positioning overshoot during sudden acceleration and deceleration, and if the E-gear ratio is set too large, it will also generate noise.

Speed feed-forward gain(VFG)

VFG can shorten the speed command following time, but too large setting may cause overshoot during sudden acceleration and deceleration.

6.3.3 Interpolation mode

This mode is applicable on 2 or more axis servo drives, the controller gain parameter keeps in the automatic tuning function, the main content is as follows:

Interpolation mode 1: only the position gain value (PB07) can be set manually. The remaining gains (PB06, PB08, PB09) are automatically adjusted with PA03 settings.

Interpolation mode 2: The position gain (PB07) and load inertia ratio (PB06) can be adjusted manually, and the other gains (PB08, PB09) are automatically adjusted with the setting of PA03.

7.Control Mode

7.1 Control mode selection

Shihlin servo drives have three basic control modes, including communication mode, position (internal register) mode, and speed mode. The drive supports single mode, which is one fixed mode, or dual modes. The descriptions of control modes are shown in the following table:

Mode name		Mode PA01		Description			
	woue name	code	setting	Description			
	EtherCAT Communication Mode	CoE	0020	In EtherCAT communication mode, the drive receives commands from the upper controller and runs the motor to the target position, speed, or torque to complete the task.			
Single Mode	Position Mode Position Mode (Internal Register)			The drive receives position commands and runs the motor to the target position. Position commands are provided by internal registers (63 groups or registers), and the register number can be assigned by the DI signal.			
	Speed Mode	S	0012	The drive receives speed commands and runs the motor to the target speed. You can use DI signal to select between analog voltage commands or internal speed commands (7 groups of register).			
Dual Mode	Position Mode (Internal Register) -Speed Mode	Pr-S	0011	Pr/S can be switched via the DI signal (LOP).			

+ PA01 changes become valid after power cycling.

7.2 Speed control mode

7.2.1 Speed command selection

Shihlin servo provides 8 groups of speed command, and 7 of them can be set by internal parameters.

	Speed .	(Note) Input			Speed		Related
DI options	command code	SP2		nai SP1	command	Range	parameters
	VCM	0		0	Servo stops	-	-
SD2 is disabled	SC1	0		1	Internal speed command 1	-6000 ~ 6000	PC05
(Initial status)	SC2	1		0	Internal speed command 2	-6000 ~ 6000	PC06
	SC3	1		1	Internal speed command 3	-6000 ~ 6000	PC07
	Speed command code	SP3	SP	2 SP1	Speed command	Range	Related parameters
	VCM	0	0	0	Servo stops	-	-
	SC1	0	0	1	Internal speed command 1	-6000 ~ 6000	PC05
	SC2	0	1	0	Internal speed command 2	-6000 ~ 6000	PC06
SP3 is enabled	SC3	0	1	1	Internal speed command 3	-6000 ~ 6000	PC07
	SC4	1	0	0	Internal speed command 4	-6000 ~ 6000	PC08
	SC5	1	0	1	Internal speed command 5	-6000 ~ 6000	PC09
	SC6	1	1	0	Internal speed command 6	-6000 ~ 6000	PC10
	SC7	1	1	1	Internal speed command 7	-6000 ~ 6000	PC11

(Note) 0: OFF(SCx-SG is open-circuited) 1: ON (SCx-SG is short-circuited)

To use the function of SC4~SC7, please enable SP3 signal with parameters PD02~PD06.

7.2.2 Smooth speed command

If the motor speed command changes rapidly, it might cause motor vibration, noise, or overshoot. Shihlin servo provides three types of smooth operation parameters to suppress the negative effects caused by rapid changes in speed command. First, the speed acceleration time constant adjusts the slope of acceleration, the speed deceleration time constant adjusts the slope of acceleration and deceleration time constant improves the motor stability when it starts and stops.

Name	Name Abbr	Pr.No	Setting	Unit	Default value	Control
	ADDI		Tange		value	mode
Acceleration time constant	STA	PC01	0~20000	ms	200	S
Deceleration time constant	STB	PC02	0~20000	ms	200	S
S-curve acceleration / deceleration time constant	STC	PC03	0~10000	ms	0	Pr, S

The description of the three parameters are as follows:

Speed acceleration time constant:

The acceleration time constant is the acceleration time from 0rpm to the motor rated speed. For example, if the rated speed of the servo motor is 3000rpm, and this parameter is set to 3000(3s), then the acceleration time from 0rpm to 3000rpm would take 3 seconds. If the speed command is set to 1000rpm, it would take 1 second to accelerate the motor from 0rpm to 1000rpm.

Speed deceleration time constant:

The deceleration time constant is the deceleration time from rated speed to 0rpm. For example, if a servo motor is running at 3000rpm and this parameter is set to 3000(3s), the deceleration time from 3000rpm to 0rpm would take 3 seconds. If the motor is running at 1000rpm, it would take 1 second to decelerate from 1000rpm to 0rpm.

S-curve acceleration / deceleration:

The S-curve acceleration and deceleration constant applies a three-stage acceleration and deceleration curve to smooth the motor starting and stopping process. Appropriate setting of the STC improves the stability of the motor when starting and stopping. The initial S-curve acceleration/deceleration time constant is 0. It is recommended to enable this function when using the speed mode.

- The above parameters will offer acceleration/deceleration protection function either in internal speed command or in analog speed command.
- STA, STB, and STC can be set independently. Even if STC is set to 0, the acceleration and deceleration still follow a trapezoid-curve.

Speed command low-pass filter time constant:

range	Unit	value	mode
B18 0~1000	ms	0	CoE. S
B18	3 0~1000	3 0~1000 ms	3 0~1000 ms 0

Increasing this parameter value will improve smoothness of command curve, and decrease the response level as well. If it is set to 0, it means that this function is disabled.

7.2.3 Torque limit of speed control mode

When using the speed mode, the main parameters related to the torque limit are PA05 and PC25. The table below introduces these two parameters:

Name	Name Abbr	Pr.No	Setting range	Unit	Default value	Control mode
Internal torque limit value 1	TL1	PA05	0~100	%	100	CoE, Pr, S
Internal torque limit value 2	TL2	PC25	0~100	%	100	CoE, Pr, S

You should set parameters PD02~PD06 to enable TL signal. And if TL-SG is open-circuited, it means PA05 is valid.

The options of TL is as follow:

(Note) DI signal	Valid targua limit valua
TL	valid torque inflit value
0	PA05
1	If PC25 > PA05 => TL value = PA05
1	If PC25 < PA05 => TL value = PC25

Note 0: OFF(TL-SG is open-circuited) 1: ON (TL-SG is short-circuited)

TLC-SG becomes conductive when the torque generated by the servo motor reaches the setting of PA05, PC25 or the analog torque limit. TLC is a DO signal.

Name	Name Abbr	Description	Control mode
Torque		When the torque reaches the setting of the Inner torque limit	CoE,
limiting	TLC	1(PA05), TLC-SG will be conductive. TLC-SG will not be	Pr S
control		conductive when SON is off.	11, 0

7.2.4 Gain adjustment of speed loop

In the speed loop, you can manually set some gain parameters. Use PA02 to set the gain adjustment mode as manual or automatic. If automatic adjustment is set, the inertia ratio and gain values will be estimated continuously. If manual mode is set, you should manually input the correct load inertia and gain values of the system, and all automatic or auxiliary functions will be disabled. The diagram of the speed loop is shown below:

The gain adjustment related parameters in speed control loop are summarized as follows:

Name	Name Abbr	Pr.No	Setting range	Unit	Default value	Control mode
Auto-tuning mode setting	ATUM	PA02	0000h~0004h	N/A	0002h	CoE, Pr, S
Auto-tuning response level setting	ATUL	PA03	1~32	N/A	10	CoE, Pr, S
Speed loop gain	VG1	PB08	40~9000	rad/s	183	CoE, Pr, S
Speed integral gain	VIC	PB09	1~1000	ms	34	CoE, Pr, S
Speed feed-forward gain	VFG	PB10	0~200	%	0	CoE, Pr, S

Auto mode:

The servo drive optimize controller gain during acceleration and deceleration. A detailed description can be found in section 6.3.1.

Manual mode:

When parameter PA02 is set to 0000 or 0001, the manual mode is enabled. And the three main related gain are the speed loop gain (PB08), the speed integral gain value (PB09), and the speed feed forward gain value (PB10).

Parameters need to set in manual mode

Speed loop gain:

Increasing the value of this parameter will increase the bandwidth of the speed loop, but if the setting is too large, it will cause the system oscillation. It is recommended to estimate a base value in the auto mode, slowly increase the value if it fails to meet the requirement in the manual mode. and return to the previous setting value once the system has generated oscillations.

Speed integral gain:

Decreasing this parameter setting value will increase the low-frequency rigidity of the speed loop and reduce the steady state deviation. But if the setting is too low, it may worsen the phase lag and may cause system instability.

Speed feed-forward gain:

Speed feed-forward gain can reduce the phase lag deviation and improve the ability to follow command trajectories. When the setting value is close to 100, the system would have very small dynamic tracking deviation and the most complete pre-compensation. If the setting is too low, it cannot obviously improve the system, and if the setting is too large, the system is easy to oscillate.
7.2.5 Resonance suppression unit

(1) Auto high-frequency resonance suppression

When the response bandwidth of the control system is too high, it may cause resonance of the mechanism, or even cause the damage of the mechanism. Usually it can be improved by strengthening the rigidity of the mechanism or reducing the bandwidth of the system, but it will increase the cost and reduce the response. To suppress resonance without increasing the cost and without reducing the bandwidth, the SDC servo drive provides Auto High-frequency Resonance Suppression, its relevant parameters, setting range, the initial value are shown in the table below. It mainly provides five groups of resonance suppression filters and one group of low-pass filter to suppress resonance, you can manually or automatically operate as below instructions.

Name	Name Abbr	Pr.No	Setting range	Unit	Default value	Control mode
Auto resonance suppression		DB27	0~2	Ν/Δ	1	CoE Pr S
mode	ANCI	F DZ/	0-2			00L, 11, 0
Auto resonance detection level	ANCL	PB28	1~300	%	50	CoE, Pr, S
Machine resonance suppression			10~1000	<u>Ц</u> 7	1000	CoE Dr S
frequency(1)		1 DO1	10 4000	112	1000	COL, 11, O
Machine resonance suppression			0~32	dB	0	CoE Pr S
attenuation rate(1)		F DUZ	01-52	UD	0	COL, F1, O
Machine resonance suppression		DB21	10~1000	<u>Ц</u> -7	1000	CoE Dr S
frequency(2)	INF IF Z	FDZI	10/24000	TIZ	1000	COE, PI, 5
Machine resonance suppression		0822	0~32	dB	0	CoE Dr S
attenuation rate(2)	INI IDZ	FDZZ	0 02	uD	0	002,11,0
Machine resonance suppression		DB25	10~1000	LI-7	1000	CoE Dr S
frequency(3)	INF IF S	1 020	10-4000		1000	002,11,0
Machine resonance suppression		DB26	0~32	dB	0	CoE Dr S
attenuation rate(3)		1 020	0 02	UD	0	COE, PI, S
Machine resonance suppression		DB15	10~1000	<u>Ц</u> 7	1000	CoE Pr S
frequency(4)		1 040	10 4000	112	1000	00L, 11, 0
Machine resonance suppression		DB/6	0~32	dB	0	CoE Pr S
attenuation rate(4)		1 040	0.02		0	COL, 11, O
Machine resonance suppression	NHE5	PR47	10~4000	Hz	1000	CoE Pr S
frequency(5)			10 4000	112	1000	002,11,0
Machine resonance suppression		PR48	0~32	dB	0	CoF Pr S
attenuation rate(5)		1 040	0.02		0	UUL, F1, U
Resonance suppression		PB03	0~10000	0 1me	10	CoE Pr S
low-pass filter	I N L I	1 000	0 10000	0.1113		00∟, F I, 0

Manual mode:

The drive provides five groups of filters and one group of low-pass filters to perform manual resonance suppression. The first group is PB01, PB02, the second group is PB21, PB22, the third group is PB25, PB26, the fourth group is PB45, PB46, the fifth group is PB47, PB48, and the low-pass filter is PB03, in which PB01, PB21, PB25, PB45, and PB47 are the suppression frequencies, PB02, PB22, PB26, PB46, and PB48 are the resonance attenuation rates, and PB03 is the time constant.

If the resonance frequency is known, you can manually set the frequency of the filter and increase the attenuation rate gradually (Note 2), or slowly increase the low-pass filter time constant (reduce the low-pass filter bandwidth) until no resonance occurs, but this method will reduce the response bandwidth of the system.

Auto mode:

The drive provides three groups of filters to perform auto resonance suppression. The first group is PB01 and PB02, the second group is PB21 and PB22 and the fourth group is PB45 and PB46, where PB01, PB21 and PB45 are the suppression frequencies and PB02, PB22 and PB46 are the resonance attenuation rates.

When resonance occurs, you can set PB27 to 1 or 2 to turn on the auto suppression function if the resonance frequency is unknown. At this time, the drive will automatically detect the resonance frequency and attenuation rate, and set the detected results to the first, second, and fourth group of filters sequentially (Note 1). If PB27 is set to 1, PB27 will be automatically change back to 0 after auto-detection; if PB27 is set to 2, resonance will be continuously detected and suppressed. For other details of PB27 parameter operation flow, please refer to the following table.

When PB27 is set to 1 or 2, if the resonance still exists, please check whether any of PB02, PB22 and PB46 is set to 32, if yes, it means that this resonance phenomenon cannot be suppressed by the filter, and it is recommended to reduce the system bandwidth and perform re-estimation; if the parameter value is less than 32 and greater than 0, it means that the resonance frequency is detected by the auto-detection mode. However, the resonance still exists, which is due to the insufficient attenuation rate (Note 1). You can increase the attenuation rate to improve (Note 2). If PB02, PB22 and PB46 are all 0, it means that the resonance frequency is not detected, which may due to the detection level (PB28) is too high, it is recommended to reduce the detection level and set the PB27 to 1 or 2 to re-detect. The complete auto resonance suppression flowchart can be referred in the following table.

Note 1: The attenuation rate detected by the drive is the most suitable attenuation rate. Maybe it's not the best one, but it can ensure the stable operation of the system.

Note 2: Be careful when manually adjust the attenuation rate, if the setting is too large, it may cause system instability.

During the auto mode execution, the PB27 value would be changed. The following table explains it.

PB27 transient status			Description						
0	\rightarrow	1	Clear PB01, PB02, PB21, PB22, PB45, PB46 values, enable this auto mode.						
0	\rightarrow	2	Clear PB01, PB02, PB21, PB22, PB45, PB46 values, keep this auto mode						
			running.						
1	\rightarrow	0	Store PB01, PB02, PB21, PB22, PB45, PB46 value, disable this auto mode.						
1	\rightarrow	1	The auto mode is not yet finished.						
1	\rightarrow	2	Hold PB01, PB02, PB21, PB22, PB45, PB46 values, keep this auto mode						
			running.						
2	\rightarrow	0	Store PB01, PB02, PB21, PB22, PB45, PB46 value, disable this auto mode.						
2	\rightarrow	1	Clear PB01, PB02, PB21, PB22, PB45, PB46 values, enable this auto mode.						
2	\rightarrow	2	The auto mode is not yet finished.						

(2) Automatic low-frequency vibration suppression

When the command is changed instantly, the motor side and the load side cannot be synchronized due to insufficient rigidity of the drive system, it will have mechanical vibration during positioning, and then cause problems such as inaccurate positioning and bad product yield. Usually it can be improved by reducing the bandwidth of the system, but the response will be worse in this case. To suppress vibration without reducing the bandwidth, this servo drive provides Automatic Low-frequency Vibration Suppression, its related parameters, setting ranges, and default values are shown in the following table. It mainly provides two groups of low-frequency vibration filters for you to operate manually or automatically.

Name	Name Abbr	Pr.No	Setting range	Unit	Default value	Control mode
Auto low-frequency vibration suppression mode	AVSM	PB29	0~1	N/A	0	CoE, Pr
Low-frequency vibration detection level	VCL	PB30	1~8000	pulse	50	CoE, Pr
Low-frequency vibration suppression frequency 1	VSF1	PB31	1~3000	0.1Hz	100	CoE, Pr
Low-frequency vibration suppression gain 1	VSG1	PB32	0~15	N/A	0	CoE, Pr
Low-frequency vibration suppression frequency 2	VSF2	PB33	1~3000	0.1Hz	100	CoE, Pr
Low-frequency vibration suppression gain 2	VSG2	PB34	0~15	N/A	0	CoE, Pr

Manual mode:

The SDC servo drive provides two groups of suppression filters for manual suppression. The first group is PB31, PB32, the second group is PB33, PB34, of which PB31 and PB33 are the suppression frequencies, PB32, PB34 are the suppression gains. If the vibration frequency of the mechanism is known, you can manually set the vibration frequency at PB31, PB33, and set PB32, PB34 to 1. In which, 1 represents enabling of the suppression function, 0 represents disabling of the suppression function. Increase the gain value can improve the position response. The larger the value is , the better the response will be(Note 1).

Auto mode:

The SDC drive provides two groups of filters to perform auto low-frequency vibration suppression. The first group is PB31 and PB32, the second group is PB33 and PB34, of which PB31 and PB33 are the suppression frequencies, PB32 and PB34 are the suppression gain. When low-frequency vibration occurs, you can set PB29 to 1 to enable the auto suppression function when the vibration frequency is unknown, then the drive will automatically detect the vibration frequency and set the detected results to PB31, PB33 sequentially, and then set PB32, PB34 to 1 to enable the suppression function. PB29 will be automatically set back to 0 after auto-detection, and other detailed PB29 operation flow can be referred to the following table.

When PB29 is set to 1, if vibration still exists, please check whether PB32 and PB34 are both 0. If yes, it means that the vibration frequency is not detected, which may due to the vibration detection level setting is too high(Note 2), and you can lower the setting and perform re-detection. If not, it means that the vibration frequency is incorrectly detected, which may due to the vibration detection level setting is too low and the noise is mistakenly recognized as vibration, you can increase the setting before re-detection. The complete auto-suppression flowchart can be found in the following:

Note 1: Large gain may cause vibrate.

Note 2: Vibration detection level is the vibration peak to peak value, and the unit is pulse.

PB29 flow chart									
PB29 current value	PB29 value to be modified	Function							
0	1	Clear PB31~34 values,							
0	I	enable the auto-suppression mode							
1	0	Store PB31~34 value,							
I	U	disable the auto-suppression function.							
1	1	Clear PB31~34 values,							
1	I	enable the auto -suppression mode							

Flow chart of auto-resonance suppression

7.2.6 Gain switching function

The Shihlin servo provides gain switching function that can be used to switch the gain on a running or stopped servo motor. The switching can be performed by DI pins. When using gain switching function, manual mode is required(PA02 is set to ____0 or ____1). This function is disabled in auto tuning mode.

Some applicable occasions are as follows::

(1). When servo gain setting is too large and makes big noise during rotation, you can use gain switching to reduce the system gain.

(2). When the load inertia ratio changes drastically during operation, you can use gain switching to change the inertia ratio or gain value to ensure the stability of the servo system,

(3). Gain switching is used to increase the gain to improve the response of the servo system or shorten the settling time.

Name	Name Abbr	Pr.No	Setting range	Unit	Default value	Control mode
Load to motor inertia ratio	GD1	PB06	0~1200	0.1 times	70	CoE, Pr, S
Position loop gain	PG1	PB07	4~1024	rad/s	45	CoE, Pr
Speed loop gain	VG1	PB08	40~9000	rad/s	183	CoE, Pr, S
Speed integral gain	VIC	PB09	1~1000	ms	34	CoE, Pr, S
Gain switching option	CDP	PB11	0000h~ 0008h	N/A	0000H	CoE, Pr, S
Gain switching condition value	CDS	PB12	0~4000000	Set as per parameter	10	CoE, Pr, S
Gain switching time constant	CDT	PB13	0~1000	ms	1	CoE, Pr, S
Load to motor inertia ratio 2	GD2	PB14	0~1200	0.1 times	70	CoE, Pr, S
Position control gain change rate	PG2	PB15	10~500	%	100	CoE, Pr
Speed control gain change rate	VG2	PB16	10~500	%	100	CoE, Pr, S
Speed integral gain change rate	VIC2	PB17	10~500	%	100	CoE, Pr, S

The gain switching related parameters and its functions are shown below.

The gain switching related parameters are introduced as below:

(1). There are 4 gain switching related parameters, which are load inertia ratio GD1, position loop gain value PG1, speed loop gain value VG1, and speed integral gain value VIC, (PB06~PB09). They are adjusted in the same way as the manual mode, but its value may be changed during gain switching.

(2). Gain switching condition option CDP(PB11)

0 0	0	х
-----	---	---

This parameter is to set the condition of gain switching by changing the lowest digit of the parameter. It triggers the gain switching by external digital input(DI) signal. The external digital input (DI) signal can be set as the gain switching function by parameters PD02~PD06.

x=0: Disabled gain switching.

x=1: Switching is performed when the gain switching signal CDP is ON.

x=3: Switching when the position deviation pulse is not less than the setting of CDS.

x=4: Switching when the servo motor speed is not less than the setting of CDS.

x=5: Switching when the gain switching signal CDP is OFF.

x=7: Switching when the position deviation pulse is not more than the setting of CDS.

x=8: Switching when the servo motor speed is not more than the setting of CDS.

(3) Gain switching condition value CDS (PB12)

The value (pulse, rpm) for setting the gain switching condition varies according to the setting of the CDP (PB11), and when set to $\Box\Box\Box$, it is the pulse number, and when set to $\Box\Box$, it is the rpm. and the unit of the setting value varies according to the switching condition items.

PB11 setting	Switching condition	Unit
	When position deviation pulse is not less than CDS setting	pulse
	When motor speed is not less than CDS setting.	rpm
	When position deviation pulse is not more than CDS setting	pulse
	When motor speed is not more than CDS setting	rpm

(4). Time constant of gain switching CDT(PB13)

It is used to smooth the gain switching. If the gain setting is too large during gain switching, you can use PB13 to suppress the oscillation of the machine

(5). Load to motor inertia ratio 2 GD2 (PB14)

This parameter sets the load inertia ratio value to be switched. If the load inertia ratio does not change during operation, set PB14 to the value of GD1 (PB06).

(6). Change rate of PG2, VG2, and VIC2 during gain switching (PB15~PB17).

When performing the gain switching, the original servo gain value will be change to the set ratio of PG2, VG2, and VIC by a multiplication rate (%).

The following are a few gain switching examples.

Example 1: the digital input signal is selected as the switching source.

- Name Name Abbr Pr.No Setting range Unit Load to motor inertia ratio GD1 **PB06** 70 0.1 times Position loop gain PG1 PB07 100 rad/s Speed loop gain VG1 **PB08** 500 rad/s Speed integral gain VIC PB09 100 ms Gain switching option CDP PB11 0001 N/A **PB13** Gain switching time constant CDT 10 ms Load to motor inertia ratio 2 GD2 PB14 20 0.1 times Position control gain change rate PG2 PB15 80 % % VG2 120 Speed control gain change rate PB16 PB17 % VIC2 150 Speed integral gain change rate
- ① The following parameters should be set:

② Gain switching diagram

③ The change status of parameters

Name	CDP OFF		CDP ON		CDP OFF
Load to motor inertia ratio	10	\rightarrow	20	\rightarrow	10
Position loop gain	100	\rightarrow	80	\rightarrow	100
Speed loop gain	500	\rightarrow	600	\rightarrow	500
Speed integral gain	100	\rightarrow	150	\rightarrow	100

Example 2: deviation pulse is selected as switching source

Name	Name Abbr	Pr.No	Setting range	Unit						
Load to motor inertia ratio	GD1	PB06	10	0.1 times						
Position loop gain	PG1	PB07	100	rad/s						
Speed loop gain	VG1	PB08	500	rad/s						
Speed integral gain	VIC	PB09	100	ms						
Gain switching option	CDP	PB11	0003	N/A						
Gain switching condition value	CDS	PB12	100	pulse						
Gain switching time constant	CDT	PB13	10	ms						
Load to motor inertia ratio 2	GD2	PB14	20	0.1 times						
Position loop gain change ratio	PG2	PB15	80	%						
Speed loop gain change ratio	VG2	PB16	120	%						
Speed integral gain change ratio	VIC2	PB17	150	%						

1). The following parameters should be set:

2. Gain switching diagram

③. The change status of parameters

Name	CDP OFF		CDP ON		CDP OFF
Load to motor inertia ratio	10	\rightarrow	20	\rightarrow	10
Position loop gain	100	\rightarrow	80	\rightarrow	100
Speed loop gain	500	\rightarrow	600	\rightarrow	500
Speed integral gain	100	\rightarrow	150	\rightarrow	100

7.3 Position control mode

The Position Control Mode is for applications that require precision positioning, such as industrial machinery, processing machines, and so on. Shihlin servo position control commands apply internal register input mode. With the internal register input mode, you can manually input 63 groups of position command values (please refer to Chapter 8), and assign POS1~POS6 of DI for command switching. The following table describes the settings of terminal input and internal register input:

Name	Name Abbr	Pr.No	Setting range	Unit	Default value	Control mode	Description
Control mode setting value	STY	PA01 (*)	0000h ~ 1122h	N/A	1020h	ALL	Control mode setting value: u z y x x: set control mode x=0: position mode y: Position command input option y=1: internal register input

PA01 changes become valid after power cycling.

(*)The modification of PA01 would be valid by power off once and power on again.

Note: The S-pattern smooth is invalid when the external pulse-train commands are applied.

7.3.1 Internal position command (Pr command)

♦ You can refer to details in Chapter 8.

The PR position command source is a 64-group built-in position command register of parameters (PE01~PE98), (PF01~PF30). With external I/O (CN1, POS1 ~ POS6 and CTRG), you can select one of the 64 groups as the position command. The details are shown in the following table.

Position command	POSE	POSS	POSA	DUS3	POS2	POS1	CTPG	Related	
r osition command	F 030	F 033	F 034	F033	F 0.52	FUST	CING	parameters	
PO	0	0	0	0	0	0	*	PE01	
FU	0	0	0	0	0	U		PE02	
D1	0	0	0	0	0	4	•	PE03	
	0	0	0	0				PE04	
~								~	
DEO	1	1	0	0	1	0	*	PF03	
F30			0	0				PF04	
D51	1	1	0	0	1	1	*	PF05	
FUI	I	I	0	0	I	I		PF06	
~								~	
D63	1	1	1	1	1	1		PF29	
FUS							1		PF30

Status of POS1 - POS6: 0 means that DI is off (the circuit is open); 1 means that DI is on (the circuit is closed).

CTRG: indicates the moment the DI is switched from off(0) to on(1).

Absolute and incremental position registers are widely used, which are equivalent to a simple process control. You can easily complete a periodic operation according to the above table.

7.3.2 Smooth position command

When setting the filter time constant of position commands appropriately, the motor run smoothly even if drastically position command changes occur.

Name	Pr.No	Setting range	Unit	Default value	Control mode
Position					
command filter	PB04	0~20000	ms	3	Pr
time constant					
	Target	63%		t	

In addition, speed smoothing for acceleration/deceleration can also help the servo motor to run smoother. The speed smoothing parameter for position acceleration/deceleration is as follows:

Name	Name Abbr	Pr.No	Setting range	Unit	Default value	Control mode
S-curve acceleration /deceleration time constant	STC	PC03	0~10000	ms	0	Pr, S

Note: The acceleration and deceleration times for or PR mode, please refer to Chapter 8

Using speed smoothing can effectively improve the feature of motor during acceleration and deceleration. When the load inertia increases or when the inertia changes significantly, the effects of inertia and friction will make the motor run irregularly. Increasing the setting of STC(PC03) can effectively improve it.

When position command is determined by external pulse, the parameters STA (PC01), STB (PC02), and STC (PC03) will be disabled, due to the external input pulse command has been determined by the upper controller, which is to provide the continuity of speed and angular acceleration.

The above figure shows that the acceleration and deceleration times are controlled by (PF49~PF64) when the position command is forward rotation or reverse rotation.

When using internal register to input position command, it is recommended to manually set the acceleration/deceleration time(PF49~PF64) and the S-curve acceleration/deceleration time constant(PC03), which can make the motor run smoother.

Note: Please refer to Chapter 8 for ACC and DEC settings.

7.3.3 Electronic gear ratio (E-Gear ratio)

By changing the E-gear ratio setting, the transmission device can move different distance. The related parameters are shown in the table below:

Name	Name Abbr	Pr.No	Setting range	Unit	Default value	Control mode
E-Gear ratio numerator	CMX	PA06	1~2 ²⁶	N/A	1	CoE, Pr
E-Gear ratio denominator	CDV	PA07	1~2 ²⁶	N/A	1	CoE, Pr
E-Gear ratio numerator 2	CMX2	PC32	1~2 ²⁶	N/A	1	CoE, Pr
E-Gear ratio numerator 3	CMX3	PC33	1~2 ²⁶	N/A	1	CoE, Pr
E-Gear ratio numerator 4	CMX4	PC34	1~2 ²⁶	N/A	1	CoE, Pr

Incorrect setting of E-gear ratio will cause servo motor burst, so you should set these parameters when servo is OFF. The setting value must be within the range of 1/50 < (CMX/CDV) < 64000, otherwise the motor cannot operate normally.

The relationship between the numerator and the denominator of the E-gear ratio and the command are showing in the figure below:

There are four groups of E-gear ratio numerators optional, You can set the two DI as CM1 and CM2 to switch them, please refer to the table below.

Name	CM1	CM2	Control mode
E-Gear ratio numerator 1 (PA06)	0	0	CoE, Pr
E-Gear ratio numerator 2 (PC32)	1	0	CoE, Pr
E-Gear ratio numerator 3 (PC33)	0	1	CoE, Pr
E-Gear ratio numerator 4 (PC34)	1	1	CoE, Pr

0: CMx-SG is open-circuited, 1: CMx-SG is short-circuited.

7.3.4 Torque limit of position loop

Same as section 7.2.3

7.3.5 Position loop gain

Since the position loop includes speed loop, if you uses the manual mode to adjust the gain values, it is necessary to set the speed gain related parameters first (refer to section 7.2.4), and then set the position proportional gain and the position feed-forward gain. The position loop gain can be set to $1/4 \sim 1/6$ of speed loop gain value.

You can also use the auto-tuning mode to set the position and speed related gain automatically. The block diagram of the position loop is as follows:

Pulse feed-forward

Name	Name Abbr	Pr.No	Setting range	Unit	Default value	Control mode
Auto tuning mode option	ATUM	PA02	0000h~0004h	N/A	0002h	CoE, Pr, S
Auto-tuning response level setting	ATUL	PA03	1~32	N/A	10	CoE, Pr, S
Position feed-forward gain	FFC	PB05	0~200	%	0	CoE, Pr
Position loop gain	PG1	PB07	4~1024	rad/s	45	CoE, Pr

The parameters related to position gain adjustment are listed below:

When the position loop gain PG1 (PB07) is set too large, although the bandwidth and response become faster, the motor will rotate back and forth with vibration, which is not allowed in precise position control applications, so you must reduce the PG1 value to avoid vibrate.

If the bandwidth is limited by the mechanical parts, the position command is not able to be tracked, which will cause big position deviation. You can use the position feed-forward gain to reduce the position tracking dynamic deviation, in other words, using position feed-forward gain will shorten the position settling time.

Position feed-forward gain adjustment should set from low to high. Theoretically, setting to 1 should be the best. If the setting is too large, the machine may vibrate. In this case, the position feed-forward value should be reduced until no vibration occurs.

7.4 Dual mode

Shihlin servo supports one dual mode, and you can set PA01 to use it. See the table below:

Mode name		Mode code	PA01 setting value	Description
Dual mode	Internal register Position-Speed	Pr-S	1011h	Switch Pr and S mode with DI signal.

When using dual mode, the DI and DO assignment is very important in order to avoid insufficient DI/DO pins.

The DI pin of the switching mode is LOP pin, you should enable LOP by DI. And its description is shown in the table below:

Name	Name Abbr	I/O type	CN1 Pin	Description			Control mode	
				Use mod cont	d to select the e in position/ rol switching	e control speed mode		
Control			CN1-7		(Note) LOP	Control mode		Described
mode switch	LOP	DI	~ CN1-11		0	Position (Pr)		different control mode
					1	Speed		
				Note:				
				0: OFF(LOP-SG is open-circuited)				
				1: O	N(LOP-SG is	short-circuited)	

7.4.1 Position/speed dual mode

The Pr/S mode can be switched by the LOP terminal of DI pin. When parameter PA01 is set to Pr/S switching mode, the switching timing diagram is as follows:

The mode cannot be switched if the motor is running at high speed. When DO ZSP is on, you can perform the mode switching, and it is recommended to wait until the motor stops completely before mode switching.

7.5 Other functions

•Before connecting to device interface, turn off the power and wait for 20 DANGER minutes until the charging LED turns off, and check the residual voltage by meter. Otherwise, it may cause electric shock.

CAUTION •Please use specified device interface to avoid fire or malfunction.

7.5.1 Selection of regenerative resistor

•Only specified regenerative resistor can be used, otherwise, a fire disaster may occur.

When the direction of torque is opposite to the direction of rotation, the motor is changed to a generator, the energy generated returns to the servo drive from the load, the voltage of P-N will rise during this time. It requires regenerative protection function to stabilize the voltage within the safe value of 370V, and to avoid the destruction of the module and capacitor. The function mainly consists of IGBT and resistor. Regenerative energy is consumed by the resistor, so it is necessary to pay attention to the amount of energy that the resistor can withstand before using it. The regenerative protection function is controlled by the regeneration IGBT, you should check it before using. If the regenerative energy, which may cause damage to the drive.

The drive has built-in regenerative resistor, if the regenerative energy is too large, it is not recommended to use the built-in regenerative resistor, you should use an external regenerative resistor instead, to avoid overheating of the built-in regenerative resistor or energy that cannot be consumed which may damage the drive.

For the drive of 400W (including) or above, it has a built-in regenerative resistor in P-C terminal. If external regenerative resistor is needed, please connect it to the P-C terminal. (Do not connect the built-in regenerative resistor to P-C terminal when using an external one.)

The following table describes the specifications of the built-in regenerative resistors of each model:

	Specification regenerativ	n of built-in ve resistor	The Min permissible	Consumption capacity of built-in resistor(W)				
Drive(w)	Resistance(Ω)	Capacitor(W)	resistance (Ω)					
100		ΝΙΑ						
200								
400	100	20	100	10				
750	40	40	40	20				
1000	40	40	40	20				

◆Please set the resistance value (PA10) and capacity (PA11) of the regenerative resistor correctly, otherwise it will affect the function.

◆The regenerative consumption capacity of built-in regenerative resistors is the average value of the regenerative capacity, and its value is 50% of its rated capacity. Same rule should be applied on the external regenerative resistor

If the regenerative capacity exceeds the capacity of the built-in regenerative resistor, an external regenerative resistor should be connected, and it's suggested to choose one with the same resistance value. If connecting series-parallel mode, please make sure that the resistance value meets the limitation. For safety reasons, you can use regenerative resistors equipped with thermal switches to reduce the temperature of resistor, and can also apply forced cooling. Contact the manufacturer for the load characteristics of the regenerative resistor.

When using external regenerative resistor, please use the recommended values in the above table. To easily estimate the required capacity of the regenerative resistor, below is the instruction of selecting the external regenerative resistor capacity:

(a) Without external load torque

If the motor operating in a back-and-forth mode, the regenerative energy generated by the brakes will enter the capacitor of the DC bus first, and the regenerative resistor will consume the excess energy when the voltage of the capacitor exceeds a certain value. Here introduces how to select the regenerative resistor.

The following table provides the formula for energy calculation, you can refer to it when selecting.

Drive(W)		Motor	Motor inertia J(x10 ^{-₄} kgm²)	Regenerative energy generated when the motor decelerates from the rated speed to 0 without load Es(joule)	Regenerative energy of capacitor Ec(joule)	Max. motor speed (rpm)
	100	SME-L005300	0.03	0.15	9.90	3000
Low	100	SME-L010300	0.052	0.26	9.90	3000
LOW	200	SME-L020300	0.161	0.79	9.90	3000
merua	400	SME-L040300	0.277	1.37	9.90	3000
	750	SME-L07530000	1.07	5.28	16.80	3000
	1K	SME-L10020000	6.1	13.38	16.80	2000

The formula for calculating the capacity of regenerative resistor by using the Es and Ec is as follows:

The capacity of regenerative resistor ==> $2 \times ((N+1) \times E_s - E_c)/T$

Where N is the load inertia ratio, T is the operation cycle (manually set).

Assuming that the load inertia is N times the motor inertia, and when the motor decelerates from 3,000 rpm to 0, the regenerative energy is $(N+1) \times Es$ and the regenerative resistor needs to consume $(N+1) \times Es$ -Ec Joules. Assume that the operation cycle is T sec, then the required power of regenerative resistor = 2 × $((N+1) \times Es$ -Ec)/T.

The calculation is as follows:

In the following table, J is the motor inertia (unit: kg*m2), and Wr is the maximum speed in a action cycle(unit: rpm).

Step	ltem	Calculation formula and setting method	
1	Set the operation cycle T	Manual input(round-trip action cycle)	
2	Set rotation speed Wr	Manual input or read from panel display(r)	
2	Sat load/mater inartia ratio N	Manual input or read from panel display (Dc) (PA02=0002	
3		is valid)	
1	Calculate the maximum	Es = J * Wr^2 / 182 (if it's rated speed, you can check the	
4	regenerative energy Es	value in the table directly)	
Б	Set the consumable regenerative	Pofer to the above table	
5	energy Ec		
6	Calculate the capacity of	$2 * ((N + 1) * E_0 = E_0) / T$	
0	regenerative resistor	2 ((N + 1)) = S - E(1) + 1	

Example:

Take 400W model as an example, the operation cycle is T = 0.5 sec, the maximum rotation speed is 3000rpm, the load inertia is 10 times of the motor inertia, then the required capacity of the regenerative resistor = $2 \times ((10 + 1) \times 1.37 - 9.90) / 0.5 = 13.6W$. Therefore, it is necessary to connect an external regenerative resistor more than 16W.

Note: Since the maximum speed of 3000rpm is the rated speed of 400W, the table on the previous page can be used to find out Es = 1.37 J.

In general, the built-in regenerative resistor can meet the requirement when the external load is not too large. When the regenerative resistance is too small, it will accumulate more and more energy and temperature. When the temperature exceeds a certain value, it is easy to burn out the brake resistor.

You can refer to section 16.2 when using an external regenerative resistor.

(b) When there is external torque and the motor does the negative work.

Usually, the motor does positive work and the motor's torque direction is identical to the rotation direction. However, in some special cases, when the external load exceeds torque, the external energy is applied to the servo drive through the motor and generate regenerative energy.

In the below example, when the motor is running at constant speed, the external load torque is positive in most of the time, and a large amount of energy is transferred quickly to the regenerative resistor.

Negative work by external load torque: TL x $\boldsymbol{\omega}$

In which TL: external load torque(Unit: Nt-m), ω : rotation speed(Unit: rad/s).

For safety, it is suggested calculating in the safest situation.

For example: when the external load torque is +50% of the rated torque and the motor speed reaches 3000 rpm, for a 400W model (rated torque: 1.27Nt-m), an external regenerative resistor which is 2 x (0.5x 1.27) x (3000 x 2 x π /60) = 399W, 100 Ω is needed. Note: 1rpm = 2 π / 60 (rad/s).

7.5.2 The use of electromagnetic braking

The drive controls the brake with DO. If (1) MBR is set to off, it means the brake is not operating and the motor is clamped; if (2) MBR is set to on, it means the brake is operating and the motor can run freely. You can use PC16 to control the electromagnetic brake by setting the delay time from SON signal OFF to electromagnetic brake interlock signal (MBR) OFF. An electromagnetic brake is usually applied in the Z-axis (vertical axis) direction. The motor lifetime will be reduced due to the excessive heat generated by continuous resistance. To avoid incorrect operation, the brake can be enabled only when the servo is switched off, the brake signal controls the solenoid valve and provides power for electromagnetic brake operation.

- The brake signal controls the solenoid valve to magnetize, making external 24V power supply as a circuit to provide power for turning on the electromagnetic brake.
- Brake coil has no polarity.
- It is prohibited to use the drive's internal +24V power supply (VDD) as the motor brake power supply.
- If the MBR DO signal is not applied, you should follow the MBR brake control timing diagram.
- ◆ To enable the DO MBR function, set PA01 to 01□□.

Electromagnetic brake control timing diagram:

Wiring diagram of electromagnetic brake:

Specifications of electromagnetic brake

	SME series					
Motor model name	1010200	L02030B/	107520P	L10030B		
	LUIU3UB	L04030B	LU7550B			
Electromagnetic brake type	Spring-loaded safety brake					
Rated voltage (V)	DC 24V					
Power consumption (W)	7.2	7.6	8	10		
Rated current (A)	0.3	0.32	0.33	0.42		
Static friction torque (N*m)	0.3	1.3	2.5	3.2		

	SM3 series				
Motor model name		M02030B/	M07530B		
	M01030B	M04030B/	H07530B		
		H04030B	M10030B		
Electromagnetic brake type	Spring-loaded safety brake				
Rated voltage (V)		DC 24V			
Power consumption (W)	6.1	7.6	10		
Rated current (A)	0.25	0.31	0.48		
Static friction torque (N*m)	0.32	1.5	3.2		

Electromagnetic brake is only for safety holding of the motor in stopped state, not for motor deceleration braking.

8.Parameters

8.1 Parameter definitions

According to the safety and frequency of use, the parameters are divided into basic parameters, gain and filter parameters, extension parameters, and input/output setting parameters. If it is necessary to adjust the parameters read/write access, modify the setting value of parameter PA42 so that the setting of the extension parameter can be changed. The following are the precautions of parameter setting.

1. Parameter type

In section 8.2, parameters are classified into a parameter list according to its function, which is easy to search. For detailed parameter descriptions, you can refer to section 8.3.

2. Special symbols for parameter codes

(**■**) Parameter resets to its default value after power cycling.

(*) Parameter changes become valid after power cycling, such as PA01.

(\blacktriangle) You are not able to set the parameter when Servo is ON, such as PA07. And there are 2 ways to turn off the servo.

(1) Turn off the DI SON signal.

(2) Set SON signal to 0 by changing PD16, and ensure to restore PD16 as external terminal mode after the modification.

Parameter group	Main content			
Basic parameters	This is the basic parameter to be set when the servo drive is used for position			
(No PA□□)	control.			
Gain, filter parameters	When the manual tuning gain is used plages act these peremeters			
(No PB□□)	when the manual tuning gain is used, please set these parameters.			
Extension setting	This is the main peremeter to be set when the serve drive is used in the speed			
parameters	mode, targue control mode, and E com function			
(No PC□□)	mode, torque control mode, and E-cam function.			
Input/output setting				
parameters	Used to change the output/input signals of the servo drive.			
(No PD□□)				
Pr path parameters 1	Poloted peremeters group 1 for Dr position path planning			
(No PE□□)	Related parameters group 1 for Pr position path planning.			
Pr path parameters 2	Poloted peremeters group 2 for Dr position path planning			
(No PF□□)	Related parameters group 2 for Pr position path planning.			

They are categorized according to function as follows:

The description of control modes is as follows:

	Mode name	Mode code	Description
	EtherCAT		In EtherCAT communication mode, the drive receives servo
	communication	CoE	commands from the upper controller and runs the motor to the
e	mode		target position, speed, or torque to complete the control task.
pou	Position		The drive receives the position command which is provided by
L E	mode(internal	Pr	the internal register and runs the motor to the target position.
ing	register input)		You can use the DI signal to select the register number.
ပ			The drive receives the speed command and runs the motor to
	Speed mode	6	the target speed. The speed command can be selected by DI
	Speed mode	3	signal to choose between analog voltage commands or internal
			speed commands (7 group register)
	Dual mode	Pr-S	Pr/S is switched via the signal of DI.

8.2 List of parameters

The parameters of Shihlin servo are mainly classified into five groups, they are PA parameter group ~ PF parameter group. PA parameters are basic parameters, such as control mode selection, auto tuning function, etc. The PB parameters are gain and filter parameters. The PB parameters makes the servo motor to run in a more stable state. PC parameters are extension parameters, which include speed mode, torque mode and E-cam function parameters, as well as analog-related parameters and communication settings. PD parameters are input and output setting parameters, which are mainly used to manually set the DI and DO parameters. PE and PF parameters are Pr path planning related parameters. The following table lists all the parameters of Shihlin servo drive, which is easier for you to enquiry.

		_	Dofault		Control			
Pr.No	Abbr	Function	valuo	Unit	mode			
			value		CoE	Pr	S	
PA01(*)	STY	Control mode setting	1020h	N/A	0	0	0	
PA02(▲)	ATUM	AUTO tuning mode setting	0002h	N/A	0	0	0	
PA03	ATUL	Auto-tuning response level setting	10	N/A	0	0	0	
PA04	HMOV	Homing mode	0000h	N/A		0		
PA05	TL1	Internal torque limit 1	100	%	0	0	0	
PA06	CMX	E-gear ratio numerator	1	N/A	0	0		
PA07(▲)	CDV	E-gear ratio denominator	1	N/A	0	0		
PA08	HSPD1	Homing high speed option 1	100	rpm		0		
PA09	HSPD2	Homing high speed option 2	20	rpm		0		
PA10	RES1	Regenerative resistor value	Depend on	Ohm	0	0	0	
PA11	RES2	Regenerated resistor capacity	Depend on	Watt	0	0	0	
PA12	INP	In-position range	moder	pulse	0	0		
PA13		Reserved						
PA14		Reserved						
PA15	CRSHA	Motor crash protection level(torque	0	%	0	0	0	
		percentage)						
PA16	CRSHT	Motor crash protection level (protection	1	ms	0	0	0	
		time)						
PA17	OVL	Output overload warning level	120	%	0	0	0	
PA18	OVS	Over speed protection level	6300	rpm	0	0	0	
PA19	OVPE	Position deviation exceed output level	3* 2 ²⁴	pulse	0	0		
PA20		Reserved						
PA21		Reserved						

(1) Basic parameters

			Default		Control			
Pr.No	Abbr	Function	Detault	Unit	mode			
			value		CoE	Pr	S	
PA22(*)	DBF	Dynamic brake control	0	N/A	0	0	0	
PA23(∎)	MCS	Memory write-inhibit function	0	N/A	0	0	0	
PA24(*)		Reserved						
PA25		Reserved						
PA26		Reserved						
PA27		Reserved						
PA28(*)	ABS	Absolute encoder setting	0000h	N/A	0	0	0	
PA29(∎)	CAP	Absolute position reset	0000h	N/A	0	0	0	
PA30(∎)	UAP	Update encoder absolute position	0	N/A	0	0	0	
PA31	APST	Absolute coordinate system status	0000h	N/A	0	0	0	
PA32	APR	Encoder absolute position	0	pulse	0	0	0	
Ρ Δ33		(pulse number)	0	rov	0	0	0	
		(number of revolutions)	0	Tev				
PA34		Reserved						
PA35(∎)	ATST	One-touch tuning execution	0	_	0	0	0	
PA36	AOP3	One-touch tuning function option	0	-	0	0	0	
PA37(*)	FNO3	Function option 3(the function is						
		forbidden to use as it is for factory						
PA38(*)	FNO1	Motor rotation direction option						
PA39(*)	_	Reserved						
PA40(▲)	SPW	Special parameter write-in function	0000h	N/A	0	0	0	
PA41		Reserved						
PA42(*)	BLK	Parameter write-inhibit setting	0000h	N/A	0	0	0	
PA43(*)	ENB	Encoder type	0003h	N/A	0	0	0	
PA44(*)	EGM	E-gear ratio mode option	0	N/A		0		
PA45(*)	FBP	Position command pulse number	10000	Pulse		0		
		setting per revolution						
PA46		Reserved						
PA47	TLP	Positive torque limit value	5000	0.1%	0	0	0	
PA48	TLN	Negative torque limit value	5000	0.1%	0	0	0	
PA49(*)	FNO2	Function option 2 (this function is						
		forbidden to use as it is for factory						
		test)						
PA50	MLVS	Multi-revolution limit setting	0	rev	0	0	0	

(2) Gain and filter parameters

Dr No	Abbr	Function	Default	Unit	Control mode			
Pr.NO	ADDr	Function	value		CoE	Pr	S	
PB01	NHF1	Frequency of Machine resonance	1000	Hz	0	0	0	
		suppression filter 1						
PB02	NHD1	Attenuation rate of machine resonance	0	dB	0	0	0	
		suppression filter 1						
PB03	NLP	Resonance suppression low-pass filter	17	0.1 ms	0	0	0	
PB04	PST	Position command filter time constant	3	ms	0	0		
PB05	FFC	Position feed-forward gain	0	0.0001	0	0		
PB06	GD1	Load to motor inertia ratio	70	0.1 times	0	0	0	
PB07	PG1	Position loop gain	45	rad/s	0	0		
PB08	VG1	Speed loop gain	183	rad/s	0	0	0	
PB09	VIC	Speed integral gain	34	ms	0	0	0	
PB10	VFG	Speed feed-forward gain	0	%	0	0	0	
PB11(*)	CDP	Gain switching option	0000h	N/A	0	0	0	
				Kpps	0	0	0	
PB12	CDS	Gain switching condition value	10	/rpm				
				/pulse				
PB13	CDT	Gain switching time constant	1	ms	0	0	0	
PB14	GD2	Load to motor inertia ratio 2	70	0.1 times	0	0	0	
PB15	PG2	Position loop gain change ratio	100	%	0	0		
PB16	VG2	Speed loop gain change ratio	100	%	0	0	0	
PB17	VIC2	Speed integral gain change ratio	100	%	0	0	0	
PB18	SFLT	Speed command low-pass filter time	0	ms	0		0	
		constant						
PB19	TQC	Torque command filter time constant	0	ms				
PB20	SJIT	Speed feedback filter time constant	0	0.1 ms	0	0	0	
PB21	NHF2	Frequency of machine resonance	1000	Hz	0	0	0	
		suppression filter 2						
PB22	NHD2	Attenuation rate of machine resonance	0	dB	0	0	0	
		suppression filter 2						
PB23	NDF	Motor noise suppression function	0	N/A	0	0	0	
PB24	VDC	Speed differential compensation	980	N/A	0	0	0	
PB25	NHF3	Frequency of mechanical resonance	1000	Hz	0	0	0	
		suppression filter 3						
PB26	NHD3	Attenuation rate of mechanical	0	dB	0	0	0	
		resonance suppression filter 3						

DrNo	Abbr	Function	Default	Unit	Control mode			
FI.NO	IUUA	Function	value	Unit	CoE	Pr	S	
PB27	ANCF	Auto resonance suppression mode setting	1	N/A	0	0	0	
PB28	ANCL	Auto resonance detection level	50	%	0	0	0	
PB29	AVSM	Auto low frequency vibration suppression mode setting	0	N/A	0	0		
PB30	VCL	Low-frequency vibration detection level	50	pulse	0	0		
PB31	VSF1	Low-frequency vibration suppression frequency setting 1	100	0.1Hz	0	0		
PB32	VSG1	Low-frequency vibration suppression gain 1	0	N/A	0	0		
PB33	VSF2	Low-frequency vibration suppression frequency setting 2	100	0.1Hz	0	0		
PB34	VSG2	Low-frequency vibration suppression gain 2	0	N/A	0	0		
PB35	FRCL	Friction compensation level	0	%	0	0	0	
PB36	FRCT	Friction compensation smoothing time constant	0	ms	0	0	0	
PB37	FRCM	Friction compensation mode option	0	N/A	0	0	0	
PB38	FFCT	Position feed forward filter time constant	0	ms	0	0		
PB39		Reserved						
PB40		Reserved						
PB41		Reserved						
PB42		Reserved						
PB43		Reserved						
PB44	PPD	Position loop compensation gain	0	rad/s	0	0	0	
PB45	NHF4	Frequency of mechanical resonance suppression filter 4	1000	Hz	0	0	0	
PB46	NHD4	Attenuation rate of mechanical resonance suppression filter 4	0	dB	0	0	0	
PB47	NHF5	Frequency of mechanical resonance suppression filter 5	1000	Hz	0	0	0	
PB48	NHD5	Attenuation rate of mechanical resonance suppression filter 5	0	dB	0	0	0	
PB49	DST	External disturbance suppression gain	0	N/A	0	0	0	
PB50	MVF	Position command average filter time constant	0	ms	0	0		

(3) Extension parameters

Dr No	Abbr	Function	Default	Unit	Control mode		
PI.NO	ADDI	Function	value	Unit	CoE	Pr	S
PC01	STA	Acceleration time constant	200	ms		0	0
PC02	STB	Deceleration time constant	200	ms		0	0
PC03	STC	S-curve acceleration/deceleration time	0	ms		0	0
		constant					
PC04	JOG	JOG speed command	300	rpm	0	0	0
PC05	SC1	Internal speed command 1	100	rpm			0
PC06	SC2	Internal speed command 2	500	rpm			0
PC07	SC3	Internal speed command 3	1000	rpm			0
PC08	SC4	Internal speed command 4	200	rpm			0
PC09	SC5	Internal speed command 5	300	rpm			0
PC10	SC6	Internal speed command 6	500	rpm			0
PC11	SC7	Internal speed command 7	800	rpm			0
PC12		Reserved					
PC13		Reserved					
PC14		Reserved					
PC15		Reserved					
PC16	MBR	Electromagnetic brake output delay time	100	ms	0	0	0
PC17	ZSP	Zero speed range	50	rpm	0	0	0
PC18(*)	COP1	Stop option and power interruption restart	0010h	N/A	0	0	0
		option					
PC19(*)	COP2	Alarm record clear option	0000h	N/A	0	0	0
PC20(*)	SNO	Servo drive communication device	1	N/A	0	0	0
		number					
PC21(*)	CMS	Communication mode setting	0010h	N/A	0	0	0
PC22		Reserved					
PC23	SIC	Serial communication timeout option	0	s	0	0	0
PC24(*)	DMD	Drive status display option	0000h	N/A	0	0	0
PC25	TL2	Internal torque limit 2	100	%	0	0	0
PC26		Reserved					
PC27		Reserved					
PC28		Reserved					
PC29		Reserved					
PC30		Reserved					
PC31		Reserved					

Pr No	Abbr	Function	Default	llmit	Control mode		
Pr.NO	ADDr	Function	value	Unit	CoE	Pr	S
PC32	CMX2	Electronic gear ratio numerator 2	1	N/A	0	0	
PC33	CMX3	Electronic gear ratio numerator 3	1	N/A	0	0	
PC34	CMX4	Electronic gear ratio numerator 4	1	N/A	0	0	
PC35		Reserved					
PC36		Reserved					
PC37		Reserved					
PC38	ESYC	EtherCAT Sync abnormal value setting	0	N/A	0		
PC39	ESS	EtherCAT communication address option	0	N/A	0		
PC40		Reserved					

(4) Input/output parameters

Dr.No	Abbr	Abbr Function	Default	llnit	Control mode			
PI.NO	ADDI	Function	value	Unit	CoE	Pr	S	
PD01(*)	DIA1	Input signal automatic ON option	0000h	N/A	0	0	0	
PD02(*)	DI1	Input signal option 1	0000h	N/A	0	0	0	
PD03(*)	DI2	Input signal option 2	0000h	N/A	0	0	0	
PD04(*)	DI3	Input signal option 3	0000h	N/A	0	0	0	
PD05(*)	DI4	Input signal option 4	000Bh	N/A	0	0	0	
PD06(*)	DI5	Input signal option 5	0018h	N/A	0	0	0	
PD07		Reserved						
PD08		Reserved						
PD09		Reserved						
PD10(*)	DO1	Output signal option 1	0000h	N/A	0	0	0	
PD11(*)	DO2	Output signal option 2	0000h	N/A	0	0	0	
PD12(*)	DO3	Output signal option 3	0002h	N/A	0	0	0	
PD13		Reserved						
PD14		Reserved						
PD15(*)	DIF	Digital input filter setting	0002h	N/A	0	0	0	
PD16(∎)	IOS	Digital input source control option	0000h	N/A	0	0	0	
PD17(*)	DOP1	LSP, LSN stop mode option	0000h	N/A	0	0	0	
PD18(*)	DOP2	CR signal clear mode option	0000h	N/A	0	0		
PD19(*)	DOP3	Alarm code output option	0000h	N/A	0	0	0	
PD20(*)	DOP4	Operation option when the alarm reset signal is short-circuited	0000h	N/A	0	0	0	
PD21		Reserved						
PD22		Reserved						
PD23		Reserved						
PD24		Reserved						
PD25(∎)	ITST	Communication control DI status	0000h	N/A	0	0	0	
PD26		Reserved						
PD27(*)	DOD	Output signal contact definition	0004h	N/A	0	0	0	
PD28	MCOK	Motion completion(DO:MC_OK) option	0000h	N/A		0		
PD29(*)	DID	Software DI A/B contact definition	0000h	N/A	0	0	0	
PD30~ PD32		Reserved						
PD33	SFDO	Software DO register	0000h	N/A	0	0	0	
PD34~ PD40		Reserved						

(5) Pr position path planning parameters 1

Dr No	Abbr	Eurotion	Default	Unit	Control mode		
Pr.NO	ADDr	Function	value	Unit	CoE	Pr	S
PE01	ODEF	Homing definition	00000000h	N/A		0	
PE02	ODAT	Origin definition	0	N/A		0	
PE03	PDEF1	PATH#1 definition	00000000h	N/A		0	
PE04	PDAT1	PATH#1 data	0	N/A		0	
PE05	PDEF2	PATH#2 definition	00000000h	N/A		0	
PE06	PDAT2	PATH#2 data	0	N/A		0	
PE07	PDEF3	PATH#3 definition	00000000h	N/A		0	
PE08	PDAT3	PATH#3 data	0	N/A		0	
PE09	PDEF4	PATH#4 definition	00000000h	N/A		0	
PE10	PDAT4	PATH#4 data	0	N/A		0	
PE11	PDEF5	PATH#5 definition	00000000h	N/A		0	
PE12	PDAT5	PATH#5 data	0	N/A		0	
PE13	PDEF6	PATH#6 definition	00000000h	N/A		0	
PE14	PDAT6	PATH#6 data	0	N/A		0	
PE15	PDEF7	PATH#7 definition	00000000h	N/A		0	
PE16	PDAT7	PATH#7 data	0	N/A		0	
PE17	PDEF8	PATH#8 definition	00000000h	N/A		0	
PE18	PDAT8	PATH#8 data	0	N/A		0	
PE19	PDEF9	PATH#9 definition	00000000h	N/A		0	
PE20	PDAT9	PATH#9 data	0	N/A		0	
PE21	PDEF10	PATH#10 definition	00000000h	N/A		0	
PE22	PDAT10	PATH#10 data	0	N/A		0	
PE23	PDEF11	PATH#11 definition	00000000h	N/A		0	
PE24	PDAT11	PATH#11 data	0	N/A		0	
PE25	PDEF12	PATH#12 definition	00000000h	N/A		0	
PE26	PDAT12	PATH#12 data	0	N/A		0	
PE27	PDEF13	PATH#13 definition	00000000h	N/A		0	
PE28	PDAT13	PATH#13 data	0	N/A		0	
PE29	PDEF14	PATH#14 definition	00000000h	N/A		0	
PE30	PDAT14	PATH#14 data	0	N/A		0	
PE31	PDEF15	PATH#15 definition	00000000h	N/A		0	
PE32	PDAT15	PATH#15 data	0	N/A		0	
PE33	PDEF16	PATH#16 definition	00000000h	N/A		0	
PE34	PDAT16	PATH#16 data	0	N/A		0	
PE35	PDEF17	PATH#17 definition	00000000h	N/A		0	

Dr No	Abbr	Eurotion	Default	Unit	Control mode		
Pr.NO	ADDr	Function	value	Unit	CoE	Pr	S
PE36	PDAT17	PATH#17 data	0	N/A		0	
PE37	PDEF18	PATH#18 definition	00000000h	N/A		0	
PE38	PDAT18	PATH#18 data	0	N/A		0	
PE39	PDEF19	PATH#19 definition	00000000h	N/A		0	
PE40	PDAT19	PATH#19 data	0	N/A		0	
PE41	PDEF20	PATH#20 definition	00000000h	N/A		0	
PE42	PDAT20	PATH#20 data	0	N/A		0	
PE43	PDEF21	PATH#21 definition	00000000h	N/A		0	
PE44	PDAT21	PATH#21 data	0	N/A		0	
PE45	PDEF22	PATH#22 definition	00000000h	N/A		0	
PE46	PDAT22	PATH#22 data	0	N/A		0	
PE47	PDEF23	PATH#23 definition	00000000h	N/A		0	
PE48	PDAT23	PATH#23 data	0	N/A		0	
PE49	PDEF24	PATH#24 definition	00000000h	N/A		0	
PE50	PDAT24	PATH#24 data	0	N/A		0	
PE51	PDEF25	PATH#25 definition	00000000h	N/A		0	
PE52	PDAT25	PATH#25 data	0	N/A		0	
PE53	PDEF26	PATH#26 definition	00000000h	N/A		0	
PE54	PDAT26	PATH#26 data	0	N/A		0	
PE55	PDEF27	PATH#27 definition	00000000h	N/A		0	
PE56	PDAT27	PATH#27 data	0	N/A		0	
PE57	PDEF28	PATH#28 definition	00000000h	N/A		0	
PE58	PDAT28	PATH#28 data	0	N/A		0	
PE59	PDEF29	PATH#29 definition	00000000h	N/A		0	
PE60	PDAT29	PATH#29 data	0	N/A		0	
PE61	PDEF30	PATH#30 definition	00000000h	N/A		0	
PE62	PDAT30	PATH#30 data	0	N/A		0	
PE63	PDEF31	PATH#31 definition	00000000h	N/A		0	
PE64	PDAT31	PATH#31 data	0	N/A		0	
PE65	PDEF32	PATH#32 definition	00000000h	N/A		0	
PE66	PDAT32	PATH#32 data	0	N/A		0	
PE67	PDEF33	PATH#33 definition	00000000h	N/A		0	
PE68	PDAT33	PATH#33 data	0	N/A		0	
PE69	PDEF34	PATH#34 definition	00000000h	N/A		0	
PE70	PDAT34	PATH#34 data	0	N/A		0	
PE71	PDEF35	PATH#35 definition	00000000h	N/A		0	
Drible	Abbr	Function	Default	11	Control n		ode
--------	--------	--------------------	-----------	------	-----------	----	-----
Pr.NO	ADDr	Function	value	Unit	CoE	Pr	S
PE72	PDAT35	PATH#35 data	0	N/A		0	
PE73	PDEF36	PATH#36 definition	00000000h	N/A		0	
PE74	PDAT36	PATH#36 data	0	N/A		0	
PE75	PDEF37	PATH#37 definition	00000000h	N/A		0	
PE76	PDAT37	PATH#37 data	0	N/A		0	
PE77	PDEF38	PATH#38 definition	00000000h	N/A		0	
PE78	PDAT38	PATH#38 data	0	N/A		0	
PE79	PDEF39	PATH#39 definition	00000000h	N/A		0	
PE80	PDAT39	PATH#39 data	0	N/A		0	
PE81	PDEF40	PATH#40 definition	00000000h	N/A		0	
PE82	PDAT40	PATH#40 data	0	N/A		0	
PE83	PDEF41	PATH#41 definition	00000000h	N/A		0	
PE84	PDAT41	PATH#41 data	0	N/A		0	
PE85	PDEF42	PATH#42 definition	00000000h	N/A		0	
PE86	PDAT42	PATH#42 data	0	N/A		0	
PE87	PDEF43	PATH#43 definition	00000000h	N/A		0	
PE88	PDAT43	PATH#43 data	0	N/A		0	
PE89	PDEF44	PATH#44 definition	00000000h	N/A		0	
PE90	PDAT44	PATH#44 data	0	N/A		0	
PE91	PDEF45	PATH#45 definition	00000000h	N/A		0	
PE92	PDAT45	PATH#45 data	0	N/A		0	
PE93	PDEF46	PATH#46 definition	00000000h	N/A		0	
PE94	PDAT46	PATH#46 data	0	N/A		0	
PE95	PDEF47	PATH#47 definition	00000000h	N/A		0	
PE96	PDAT47	PATH#47 data	0	N/A		0	
PE97	PDEF48	PATH#48 definition	00000000h	N/A		0	
PE98	PDAT48	PATH#48 data	0	N/A		0	
PE99		Reserved					

Dr No	Abbr	Eurotion	Default	llnit	Control mo		ode
Pr.NO	ADDr	Function	value	Unit	CoE	Pr	S
PF01	PDEF49	PATH#49 definition	00000000h	N/A		0	
PF02	PDAT49	PATH#49 data	0	N/A		0	
PF03	PDEF50	PATH#50 definition	00000000h	N/A		0	
PF04	PDAT50	PATH#50 data	0	N/A		0	
PF05	PDEF51	PATH#51 definition	00000000h	N/A		0	
PF06	PDAT51	PATH#51 data	0	N/A		0	
PF07	PDEF52	PATH#52 definition	00000000h	N/A		0	
PF08	PDAT52	PATH#52 data	0	N/A		0	
PF09	PDEF53	PATH#53 definition	00000000h	N/A		0	
PF10	PDAT53	PATH#53 data	0	N/A		0	
PF11	PDEF54	PATH#54 definition	00000000h	N/A		0	
PF12	PDAT54	PATH#54 data	0	N/A		0	
PF13	PDEF55	PATH#55 definition	00000000h	N/A		0	
PF14	PDAT55	PATH#55 data	0	N/A		0	
PF15	PDEF56	PATH#56 definition	00000000h	N/A		0	
PF16	PDAT56	PATH#56 data	0	N/A		0	
PF17	PDEF57	PATH#57 definition	00000000h	N/A		0	
PF18	PDAT57	PATH#57 data	0	N/A		0	
PE19	PDEF58	PATH#58 definition	00000000h	N/A		0	
PF20	PDAT58	PATH#58 data	0	N/A		0	
PF21	PDEF59	PATH#59 definition	00000000h	N/A		0	
PF22	PDAT59	PATH#59 data	0	N/A		0	
PF23	PDEF60	PATH#60 definition	00000000h	N/A		0	
PF24	PDAT60	PATH#60 data	0	N/A		0	
PF25	PDEF61	PATH#61 definition	00000000h	N/A		0	
PF26	PDAT61	PATH#61 data	0	N/A		0	
PF27	PDEF62	PATH#62 definition	00000000h	N/A		0	
PF28	PDAT62	PATH#62 data	0	N/A		0	
PF29	PDEF63	PATH#63 definition	00000000h	N/A		0	
PF30	PDAT63	PATH#63 data	0	N/A		0	
PF31		Reserved					
PF32		Reserved					
PF33	POV1	Speed setting of internal position	50	rpm		0	

(6) Pr position path planning parameters 2

Dr No	Abbr	Eurotion	Default	llait	Conti	rol m	ode
Pr.NO	ADDr	Function	value	Unit	CoE	Pr	S
PF34	POV2	Speed setting of internal position	10	rpm		0	
		command 2					
PF35	POV3	Speed setting of internal position	200	rpm		0	
		command 3					
PF36	POV4	Speed setting of internal position	300	rpm		0	
		command 4					
PF37	POV5	Speed setting of internal position	500	rpm		0	
		command 5					
PF38	POV6	Speed setting of internal position	800	rpm		0	
		command 6					
PF39	POV7	Speed setting of internal position	1000	rpm		0	
		command 7					
PF40	POV8	Speed setting of internal position	1200	rpm		0	
		command 8					
PF41	POV9	Speed setting of internal position	1500	rpm		0	
		command 9					
PF42	POV10	Speed setting of internal position	1800	rpm		0	
		command 10					
PF43	POV11	Speed setting of internal position	2000	rpm		0	
		command 11					
PF44	POV12	Speed setting of internal position	2200	rpm		0	
		command 12					
PF45	POV13	Speed setting of internal position	2400	rpm		0	
		command 13					
PF46	POV14	Speed setting of internal position	2700	rpm		0	
		command 14					
PF47	POV15	Speed setting of internal position	3000	rpm		0	
		command 15					
PF48	POV16	Speed setting of internal position	3000	rpm		0	
		command 16					
PF49	POA1	Acceleration/deceleration time 1 of	200	ms		0	
		internal position command					
PF50	POA2	Acceleration/deceleration time 2 of	300	ms		0	
		internal position command					
PF51	POA3	Acceleration/deceleration time 3 of	500	ms		0	
		internal position command					

Drible	Abby	Function	Default	11	Cont	rol m	ode
Pr.NO	ADDr	Function	value	Unit	CoE	Pr	S
PF52	POA4	Acceleration/deceleration time 4 of	600	ms		0	
		internal position command					
PF53	POA5	Acceleration/deceleration time 5 of	800	ms		0	
		internal position command					
PF54	POA6	Acceleration/deceleration time 6 of	900	ms		0	
		internal position command					
PF55	POA7	Acceleration/deceleration time 7 of	1000	ms		0	
		internal position command					
PF56	POA8	Acceleration/deceleration time 8 of	1200	ms		0	
		internal position command 8					
PF57	POA9	Acceleration/deceleration time 9 of	1400	ms		0	
		internal position command					
PF58	POA10	Acceleration/deceleration time 10 of	1600	ms		0	
		internal position command					
PF59	POA11	Acceleration/deceleration time 11 of	2000	ms		0	
		internal position command					
PF60	POA12	Acceleration/deceleration time 12 of	2500	ms		0	
		internal position command					
PF61	POA13	Acceleration/deceleration time 13 of	3000	ms		0	
		internal position command					
PF62	POA14	Acceleration/deceleration time 14 of	4000	ms		0	
		internal position command					
PF63	POA15	Acceleration/deceleration time 15 of	5000	ms		0	
		internal position command					
PF64	POA16	Acceleration/deceleration time 16 of	6000	ms		0	
		internal position command					
PF65	DLY1	Delay time 1 after position reached	0	ms		0	
PF66	DLY2	Delay time 2 after position reached	100	ms		0	
PF67	DLY3	Delay time 3 after position reached	200	ms		0	
PF68	DLY4	Delay time 4 after position reached	300	ms		0	
PF69	DLY5	Delay time 5 after position reached	500	ms		0	
PF70	DLY6	Delay time 6 after position reached	600	ms		0	
PF71	DLY7	Delay time 7 after position reached	800	ms		0	
PF72	DLY8	Delay time 8 after position reached	1000	ms		0	
PF73	DLY9	Delay time 9 after position reached	1200	ms		0	
PF74	DLY10	Delay time 10 after position reached	1500	ms		0	

Pr.No Abbr		Eunction	Default	llnit	Conti	rol m	ode
PLNO	ADDr	Function	value	Unit	CoE	Pr	S
PF75	DLY11	Delay time 11 after position reached	2000	ms		0	
PF76	DLY12	Delay time 12 after position reached	2300	ms		0	
PF77	DLY13	Delay time 13 after position reached	2500	ms		0	
PF78	DLY14	Delay time 14 after position reached	3000	ms		0	
PF79	DLY15	Delay time 15 after position reached	4000	ms		0	
PF80	DLY16	Delay time 16 after position reached	5000	ms		0	
PF81	PDEC	Deceleration time for auto-protection	00000000h	ms	0	0	0
PF82(∎)	PRCM	PR command trigger register	0	N/A		0	
PF83	EVON	PR number triggered by event rising	0000h	N/A		0	
		edge					
PF84	EVOF	PR number triggered by event falling	0000h	N/A		0	
		edge					
PF85(∎)	PMEM	PATH#1 - PATH#2 volatile setting	0000h	N/A	0	0	0
PF86	SWLP	Positive software limit	2 ³¹ -1	pulse		0	
PF87	SWLN	Negative software limit	-2 ³¹ +1	pulse		0	
PF88(*)	BLSF	Backlash compensation option	0	N/A	0	0	
PF89	BLSP	Backlash compensation correction	0	pulse	0	0	
		pulse number					
PF90	BLST	Backlash compensation time constant	0	0.1ms	0	0	
PF91							
~							
PF99							

Below are parameters list which is categorized by different modes.

Torque control parameters										
Dr No	Abbr	Abby Eurotion	Default	l lucit	Contr	ol mode				
Pr.NO	ADDr	Function	value	Unit	CoE	Pr	S			
PA01(*)	STY	Control mode setting	1020h	N/A	0	0	0			
PA05	TL1	Internal torque limit 1	100	%	0	0	0			
PC05	SC1	Internal speed limit 1	100	rpm			0			
PC06	SC2	Internal speed limit 2	500	rpm			0			
PC07	SC3	Internal speed limit 3	1000	rpm			0			
PC08	SC4	Internal speed limit 4	200	rpm			0			
PC09	SC5	Internal speed limit 5	300	rpm			0			
PC10	SC6	Internal speed limit 6	500	rpm			0			
PC11	SC7	Internal speed limit 7	800	rpm			0			
PC25	TL2	Internal torque limit 2	100	%	0	0	0			

Speed control parameters										
Dr No	Abbr	Eunction	Default	Unit	Contr	rol mode				
FLINU	ADDI	Function	value	Unit	CoE	Pr	S			
PA01(*)	STY	Control mode setting	1020h	N/A	0	0	0			
PA05	TL1	Internal torque limit 1	100	%	0	0	0			
DA1/(*)		Encoder output pulse number	10000	pulse		0				
			10000	/rev						
PB18	SFI T	Speed command low-pass filter time	0	ms	0		0			
		constant	0	1113	0					
PC05	SC1	Internal speed command 1	100	rpm			0			
PC06	SC2	Internal speed command 2	500	rpm			0			
PC07	SC3	Internal speed command 3	1000	rpm			0			
PC08	SC4	Internal speed command 4	200	rpm			0			
PC09	SC5	Internal speed command 5	300	rpm			0			
PC10	SC6	Internal speed command 6	500	rpm			0			
PC11	SC7	Internal speed command 7	800	rpm			0			
PC25	TL2	Internal torque limit 2	100	%	0	0	0			

Position control parameters										
Dr No	Abbr	Function	Default	11:5	Contr	ol m	ode			
Pr.NO	ADDr	Function	value	Unit	CoE	Pr	S			
PA01(*)	STY	Control mode setting	1020h	N/A	0	0	0			
PA04	HMOV	Homing mode	0000h	N/A		0				
PA05	TL1	Internal torque limit 1	100	%	0	0	0			
PA06	CMX	Electronic gear ratio numerator	1	N/A	0	0				
PA07 (▲)	CDV	Electronic gear ratio denominator	1	N/A	0	0				
PA14 (*)	ENR	Encoder output pulse number	10000	pulse/rev	0	0	0			
PA39(*)	POL	Motor rotation direction option	0000h	N/A	0	0	0			
PC25	TL2	Internal torque limit 2	100	%	0	0	0			
PC32	CMX2	Electronic gear ratio numerator 2	1	N/A	0	0				
PC33	CMX3	Electronic gear ratio numerator 3	1	N/A	0	0				
PC34	CMX4	Electronic gear ratio numerator 4	1	N/A	0	0				
PE01	ODEF	Homing definition	00000000h	N/A		0				
PE02	ODAT	Origin definition	0	N/A		0				
PE03 ~		Refer to section 8.3 for PR related				0				
PE98		definition								
PF01 ~ PF87		Refer to section 8.3 for PR related definition				0				

Dr No	Abbr	Abbr Eunction	Default	Unit	Control mode			
Pr.NO	ADDr	Function	value	Unit	CoE	Pr	S	
PB01	NHF1	Frequency of machine resonance suppression filter 1	1000	Hz	ο	0	0	
PB02	NHD1	Attenuation rate of machine resonance suppression filter 1	0	dB	0	0	0	
PB03	NLP	Resonance suppression low-pass filter	10	0.1ms	0	0	0	
PB04	PST	Position command filter time constant	3	ms	0	0		
PB19	TQC	Torque command filter time constant	0	ms				
PB20	SJIT	Speed feedback filter time constant	0	0.1ms	0	0	0	
PB21	NHF2	Frequency of machine resonance suppression filter 2	1000	Hz	0	0	0	
PB22	NHD2	Attenuation rate of machine resonance suppression filter 2	0	dB	ο	0	0	
PB23	NDF	Motor noise suppression function	0	N/A	0	0	0	
PB25	NHF3	Frequency of machine resonance suppression filter 3	1000	Hz	ο	0	0	
PB26	NHD3	Attenuation rate of machine resonance suppression filter 3	0	dB	0	0	0	
PB27	ANCF	Auto resonance suppression mode setting	1	N/A	ο	0	0	
PB28	ANCL	Auto resonance detection level	50	%	0	0	0	
PB29	AVSM	Auto low frequency vibration suppression mode setting	0	N/A	ο	0		
PB30	VCL	Low-frequency vibration detection level	50	pulse	0	0		
PB31	VSF1	Low-frequency vibration suppression frequency 1	100	0.1Hz	ο	0		
PB32	VSG1	Low-frequency vibration suppression gain 1	0	N/A	ο	0		
PB33	VSF2	Low-frequency vibration suppression frequency 2	100	0.1Hz	0	0		
PB34	VSG2	Low-frequency vibration suppression gain 2	0	N/A	ο	0		
PB35	FRCL	Friction compensation level	0	%	0	0	0	
PB36	FRCT	Friction compensation smoothing time constant	0	ms	0	0	0	

	Abbr	Eurotion	Default	Unit	Contr	ol m	ode
Pr.NO	Abbr	Function	value	Unit	CoE	Pr	S
PB37	FRCM	Friction compensation mode option	0	N/A	0	0	0
PB38	FFCT	Position feed forward filter time	0	me	0	0	
		constant	0	1115			
PB45	NHF4	Frequency of machine resonance	1000	Hz	0	0	0
		suppression filter 4	1000	112			
PB46	NHD4	Attenuation rate of machine resonance	0	dB	0	0	0
		suppression filter 4	0				
PB47	NHF5	Frequency of machine resonance	1000	Hz	0	0	0
		suppression filter 5	1000	112			
PB48	NHD5	Attenuation rate of machine resonance	0	dB	0	0	0
		suppression filter 5	0				
PC01	STA	Acceleration time constant	200	ms		0	0
PC02	STB	Deceleration time constant	200	ms		0	0
PC03	STC	S-curve acceleration/deceleration time	0	ms		0	0
		constant	0	1113			
PD17(*)	DOP1	LSP, LSN stop mode option	0000h	N/A	0	0	0
Gain and	switching p	parameters					
			Default		Contro	ol m	ode
Pr.No	Abbr	Function	Default value	Unit	Contro CoE	ol m Pr	ode S
Pr.No PA02	Abbr ATUM	Function AUTO tuning mode setting	Default value 0002h	Unit N/A	Contro CoE	ol mo Pr O	ode S O
Pr.No PA02 PA03	Abbr ATUM ATUL	Function AUTO tuning mode setting Auto-tuning response level setting	Default value 0002h 0010	Unit N/A N/A	Contro CoE O	ol mo Pr O O	ode S O O
Pr.No PA02 PA03 PB05	Abbr ATUM ATUL FFC	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gain	Default value 0002h 0010 0	Unit N/A N/A 0.0001	Contro CoE O O	Pr 0 0 0	ode S O O
Pr.No PA02 PA03 PB05 PB07	Abbr ATUM ATUL FFC PG1	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gainPosition loop gain	Default value 0002h 0010 0 45	Unit N/A N/A 0.0001 rad/s	Contro CoE O O O	Pr 0 0 0 0	ode S O O
Pr.No PA02 PA03 PB05 PB07 PB08	Abbr ATUM ATUL FFC PG1 VG1	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gainPosition loop gainSpeed loop gain	Default value 0002h 0010 0 45 183	Unit N/A N/A 0.0001 rad/s rad/s	Contro CoE O O O O	Pr 0 0 0 0 0	ode S 0 0
Pr.No PA02 PA03 PB05 PB07 PB08 PB09	Abbr ATUM ATUL FFC PG1 VG1 VIC	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gainPosition loop gainSpeed loop gainSpeed integral gain	Default value 0002h 0010 0 45 183 34	Unit N/A N/A 0.0001 rad/s rad/s ms	Contro CoE O O O O O O	Pr 0 0 0 0 0 0	ode S O O O O
Pr.No PA02 PA03 PB05 PB07 PB08 PB09 PB10	Abbr ATUM ATUL FFC PG1 VG1 VG1 VIC VFG	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gainPosition loop gainSpeed loop gainSpeed integral gainSpeed feed-forward gain	Default value 0002h 0010 0 45 183 34 0	Unit N/A N/A 0.0001 rad/s rad/s ms 0.0001	Contro CoE 0 0 0 0 0 0 0	Pr 0 0 0 0 0 0 0 0 0	ode S 0 0 0 0 0 0 0 0
Pr.No PA02 PA03 PB05 PB07 PB08 PB09 PB10 PB11(*)	Abbr ATUM ATUL FFC PG1 VG1 VIC VFG CDP	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gainPosition loop gainSpeed loop gainSpeed integral gainSpeed feed-forward gainGain switching option	Default value 0002h 0010 0 45 183 34 0 0000h	Unit N/A N/A 0.0001 rad/s rad/s ms 0.0001 N/A	Contro CoE 0 0 0 0 0 0 0 0 0	Pr 0 0 0 0 0 0 0 0 0 0	ode S O O O O O O O
Pr.No PA02 PA03 PB05 PB07 PB08 PB09 PB10 PB11(*)	Abbr ATUM ATUL FFC PG1 VG1 VIC VFG CDP	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gainPosition loop gainSpeed loop gainSpeed integral gainSpeed feed-forward gainGain switching option	Default value 0002h 0010 0 45 183 34 0 0000h	Unit N/A N/A 0.0001 rad/s rad/s ms 0.0001 N/A kpps /	Contro CoE 0 0 0 0 0 0 0 0 0	Pr 0 0 0 0 0 0 0 0 0	ode S 0 0 0 0 0 0 0
Pr.No PA02 PA03 PB05 PB07 PB08 PB09 PB10 PB11(*) PB12	Abbr ATUM ATUL FFC PG1 VG1 VIC VFG CDP CDS	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gainPosition loop gainSpeed loop gainSpeed integral gainSpeed feed-forward gainGain switching option	Default value 0002h 0010 0 45 183 34 0 0000h 10	Unit N/A N/A 0.0001 rad/s rad/s ms 0.0001 N/A kpps / pulse /	Contro CoE 0 0 0 0 0 0 0 0 0	Pr 0	ode S 0 0 0 0 0 0 0 0 0 0
Pr.No PA02 PA03 PB05 PB07 PB08 PB09 PB10 PB11(*) PB12	Abbr ATUM ATUL FFC PG1 VG1 VIC VFG CDP CDS	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gainPosition loop gainSpeed loop gainSpeed integral gainSpeed feed-forward gainGain switching optionGain switching condition value	Default value 0002h 0010 0 45 183 34 0 0000h 10	Unit N/A N/A 0.0001 rad/s rad/s ms 0.0001 N/A kpps / pulse / rpm	Contro CoE 0 0 0 0 0 0 0 0	Pr 0	ode S 0 0 0 0 0 0 0 0 0
Pr.No PA02 PA03 PB05 PB07 PB08 PB09 PB10 PB11(*) PB12 PB13	Abbr ATUM ATUL FFC PG1 VG1 VIC VFG CDP CDS CDT	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gainPosition loop gainSpeed loop gainSpeed integral gainSpeed feed-forward gainGain switching optionGain switching condition valueGain switching time constant	Default value 0002h 0010 0 45 183 34 0 0000h 10	Unit N/A N/A 0.0001 rad/s rad/s ms 0.0001 N/A kpps / pulse / rpm ms	Contro CoE 0 0 0 0 0 0 0 0 0 0 0	Pr 0 0 0 0 0 0 0 0 0 0 0	ode S 0 0 0 0 0 0 0 0 0 0 0 0 0
Pr.No PA02 PA03 PB05 PB07 PB08 PB09 PB10 PB11(*) PB12 PB13 PB14	AbbrATUMATULFFCPG1VG1VICVFGCDPCDSCDTGD2	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gainPosition loop gainSpeed loop gainSpeed integral gainSpeed feed-forward gainGain switching optionGain switching condition valueGain switching time constantLoad to motor inertia ratio 2	Default value 0002h 0010 0 45 183 34 0 0000h 10 1 1 70	Unit N/A N/A 0.0001 rad/s rad/s ms 0.0001 N/A kpps / pulse / rpm ms 0.1 times	Contro CoE 0 0 0 0 0 0 0 0 0 0 0 0	Pr 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ode S 0 0 0 0 0 0 0 0 0 0 0 0 0
Pr.No PA02 PA03 PB05 PB07 PB08 PB09 PB10 PB11(*) PB12 PB13 PB14 PB15	AbbrATUMATULFFCPG1VG1VICVFGCDPCDSCDTGD2PG2	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gainPosition loop gainSpeed loop gainSpeed integral gainSpeed feed-forward gainGain switching optionGain switching condition valueGain switching time constantLoad to motor inertia ratio 2Position loop gain change ratio	Default value 0002h 0010 0 45 183 34 0 0000h 10 10	Unit N/A N/A 0.0001 rad/s rad/s ms 0.0001 N/A kpps / pulse / rpm ms 0.1 times %	Contro CoE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pr 0	ode S 0 0 0 0 0 0 0 0 0 0 0 0 0
Pr.No PA02 PA03 PB05 PB07 PB08 PB09 PB10 PB11(*) PB12 PB13 PB14 PB15 PB16	AbbrATUMATULFFCPG1VG1VICVFGCDPCDSCDTGD2PG2VG2	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gainPosition loop gainSpeed loop gainSpeed integral gainSpeed feed-forward gainGain switching optionGain switching condition valueGain switching time constantLoad to motor inertia ratio 2Position loop gain change ratioSpeed loop gain change ratio	Default value 0002h 0010 45 183 34 0 0000h 100 100 100	Unit N/A N/A 0.0001 rad/s rad/s ms 0.0001 N/A kpps / pulse / rpm ms 0.1 times %	Contro CoE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pr 0 0 0 0 0 0 0 0 0 0 0 0 0	ode S O O O O O O O O O O O O
Pr.No PA02 PA03 PB05 PB07 PB08 PB09 PB10 PB11(*) PB12 PB13 PB14 PB15 PB16 PB17	AbbrATUMATULFFCPG1VG1VICVFGCDPCDSCDTGD2PG2VG2VIC2	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gainPosition loop gainSpeed loop gainSpeed integral gainSpeed feed-forward gainGain switching optionGain switching condition valueGain switching time constantLoad to motor inertia ratio 2Position loop gain change ratioSpeed loop gain change ratio	Default value 0002h 0010 45 183 34 0 0000h 100 100 100 100	Unit N/A N/A 0.0001 rad/s rad/s ms 0.0001 N/A kpps / pulse / rpm ms 0.1 times % 0.1 times	Contro CoE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pr 0 0 0 0 0 0 0 0 0 0 0 0 0	ode S 0 0 0 0 0 0 0 0 0 0 0 0 0
Pr.No PA02 PA03 PB05 PB07 PB08 PB09 PB10 PB11(*) PB12 PB13 PB14 PB15 PB16 PB17 PB24	AbbrATUMATULFFCPG1VG1VICVFGCDPCDSCDTGD2PG2VG2VIC2VDC	FunctionAUTO tuning mode settingAuto-tuning response level settingPosition feed-forward gainPosition loop gainSpeed loop gainSpeed integral gainSpeed feed-forward gainGain switching optionGain switching condition valueGain switching time constantLoad to motor inertia ratio 2Position loop gain change ratioSpeed loop gain change ratioSpeed loop gain change ratioSpeed loop gain change ratioSpeed differential compensation	Default value 0002h 0010 45 183 34 0 0000h 100 100 100 100 980	Unit N/A N/A 0.0001 rad/s rad/s ms 0.0001 N/A kpps / pulse / rpm ms 0.1 times % 0.1 times % 0.1 times	Contro CoE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pr 0	ode S 0 0 0 0 0 0 0 0 0 0 0 0 0

DI/DO pai	rameters						
De No	Abba	F	Default	11	Contr	ol m	ode
Pr.NO	ADDr	Function	value	Unit	CoE	Pr	S
			Depends	pulso	0	0	
PAIZ	INP	In-position range	on model	puise	0		
PC17	ZSP	Zero speed range	50	rpm	0	0	0
PC16	MBR	Electromagnetic brake output delay time	100	ms	ο	0	0
PD01(*)	DIA1	Input signal automatic ON option	0000h	N/A	0	0	0
PD02(*)	DI1	Input signal option 1(CN1-10)	0000h	N/A	0	0	0
PD03(*)	DI2	Input signal option 2(CN1-9)	0000h	N/A	0	0	0
PD04(*)	DI3	Input signal option 3(CN1-8)	0000h	N/A	0	0	0
PD05(*)	DI4	Input signal option 4(CN1-7)	000Bh	N/A	0	0	0
PD06(*)	DI5	Input signal option 5(CN1-11)	0018h	N/A	0	0	0
PD10(*)	DO1	Output signal option 1(CN1-1)	0000h	N/A	0	0	0
PD11(*)	DO2	Output signal option 2(CN1-3)	0000h	N/A	0	0	0
PD12(*)	DO3	Output signal option 3(CN1-5)	0002h	N/A	0	0	0
PD15(*)	DIF	Digital input filter setting	0002h	N/A	0	0	0
PD16(*)	IOS	Digital input source control option	0000h	N/A	0	0	
PD17(*)	DOP1	LSP, LSN stop mode option	0000h	N/A	0	0	0
PD18(*)	DOP2	CR signal clear mode option	0000h	N/A	0	0	
PD19(*)	DOP3	Alarm code output option	0000h	N/A	0	0	0
PD20(*)	DOP4	Operation option when the alarm reset	0000h	NI/A	0	0	0
		signal is short-circuited		IN/A	0	0	0
PD25(∎)	ITST	Communication control DI status	0000h	N/A	0	0	0
PD27(*)	DOD	Output signal contact definition	0004h	N/A	0	0	0

Communication parameters											
Pr.No Abbr	br Eurotion	Default	11:0:14	Control mode							
FI.NO	ADDI	Function	value	Unit	CoE	Pr	S				
PA01(*)	STY	Control mode setting value	1020h	N/A	0	0	0				
PA46(*)	CYCL	Control cycle setting	0	N/A	0	0	0				
PC38	ESYC	EtherCAT Sync abnormal value setting	0	N/A	0						
PC39(*)	ESS	EtherCAT communication address option	0	N/A	0						

		Other parameters					
Pr.No	Abbr	Function	Default	Unit	Control mode		
			value		CoE	Pr	S
PA40(▲)	SPW	Special parameter write-in function	0000h	N/A	0	0	0
PA42(*)	BLK	Parameter write-inhibit setting	0000h	N/A	0	0	0
PB06	GD1	Load to motor inertia ratio	70	0.1 times	0	0	0
PB14	GD2	Load to motor inertia ratio 2	70	0.1 times	0	0	0
PC18(*)	COP1	Stop option and power interruption restart option	0010h	N/A	0	0	0
PC19(*)	COP2	Alarm record clear option	0000h	N/A	0	0	0
PD20(*)	DOP4	Operation option when the alarm reset signal is short-circuited	0000h	N/A	0	0	0

8.3 Parameter descriptions

Pr.No	Abbr	Function and description	Control	Default	Range	Unit
		· · · · · · · · · · · · · · · · · · ·	mode	value		
PA01	STY	Control mode setting	CoE.	1020h	0000h	N/A
	(*)	u z y x	Pr.S.		~	
					1122h	
		<u>x: to set control mode</u>				
		x=0: PR mode x=1: reserved				
		x=2: speed mode				
		<u>y: to set the command source</u>				
		y=0: reserved				
		y=1: internal register input				
		y=2: EtherCAT communication mode				
		z: to set electromagnetic brake function				
		It is DO function only available on servo motors with				
		electromagnetic brake and it can be controlled by				
		PD10~PD12.				
		z=0: disabled electromagnetic brake function				
		z=1: enabled electromagnetic brake function				
		u: DI,DO option				
		u=0: the value of DI,DO(PD02 ~ PD12) are fixed,				
		DI,DO can be planned at this time.				
		u=1: the value of DI,DO(PD02 ~ PD12) are varied in				
		different control modes, DI,DO cannot be planned at				
		this time.				

Pr.No	Abbr		Function and	I description			Control mode	Default value	Range	Unit	
PA02	ATUM (▲)	Auto tuning m 0 0 y <u>y: current low-</u> y=0: PB03 y y=1: PB03 i <u>x: auto gain tu</u> x=0~1: manua x=2: auto gai and bandwidt x=3: auto ga bandwidth is a x=4: interpol remaining gai x=5: interpola	ode setting x pass filter setting changes with r is fixed value uning mode set al gain tuning mode in tuning mode h continuously in tuning mode h continuously in tuning mode adjustable) ation mode n value is adju tion mode 2(fiz	Pr.S <u>filter setting option</u> ges with response level ed value <u>mode setting</u> n tuning mode(PI control) ning mode 1(adjust load inertia ratio ntinuously) ning mode 2(fixed load inertia ratio, table) mode 1 (fixed PB07, and the ue is adjustable) mode 2(fixed PB06 and PB07, and the							
		remaining gai	n value is adju	istable)							
PA03	ATUL	Auto tuning re Auto tuning m	response level setting (mode response setting					10	1~32	N/A	
		Setting value	Response level	Speed loop response frequency		Setting value) Res	sponse evel	Speed respor freque	loop 1se ncv	
		1		10.0		17			67.1		
		2	Low	11.3		18	B	asic	75.6	3	
		3	response	12.7		19	res	ponse	85.2	2	
		4	↑	14.3		20		↑	95.9	}	
		5		16.1		21			108.	0	
		6		18.1		22			121.	7	
		7		20.4		23			137.	1	
		8		23.0		24			154.	4	
		9		25.9		25			173.	9	
		10		29.2		26			195.	9	
		11		32.9		27			220.	6	
		12		37.0		28			248.	5	
		13	↓ ↓	41.7		29		¥	279.	9	
		14	Basic	47.0		30	F	ligh	315.	3	
		15	response	52.9		31	res	ponse	355.1		
		16		59.6		32			400.	0	

Pr.No	Abbr		Function and des	scription	Control mode	Default value	Range	Unit
		Homing mode	e: X		Pr	0000h	0000h ~ 0128h	N/A
		Z	У	X				
		Limit setting	Z signal setting	Homing methods				
		0~1	0~2	0~8]			
			y=0:return to Z signal y=1:don't return	x=0:homing in forward direction and define LSP as origin				
			to Z signal (go forward to next Z signal)	x=1:homing in reverse direction and define LSN as origin				
PA04		When reaching the limits: z=0:show error, z=1:run in reverse direction	y=2:do not look for Z signal	x=2:homing in forward direction. And define ORGP: OFF->ON as origin x=3:homing in reverse direction. And define ORGP: OFF->ON as origin x=4:look for Z signal in forward direction and define it as origin. x=5:look for Z signal in				
			y=0:return to Z signal y=1:don't return to Z signal (go forward to next Z signal) y=2:do not look for Z signal	reverse direction and define it as origin. z=6:homing in forward direction And define ORGP: ON->OFF as origin z=7:homing in reverse direction, And define ORGP: ON->OFF as origin z=8:define current position as the origin				

Dr No	Abbr		Eurotion and description	Control	Default	Banga	Unit
Pr.NO	nddA		Function and description	mode	value	капуе	Unit
PA05	TL1	Internal torque	e limit 1	CoE.	100	0	%
		This paramete	er is to limit the torque generated by the	Pr.S		~	
		servo motor a	nd unit is %. The calculation formula is as			100	
		follows:					
		<u>Torque limit v</u>	<u>alue=maximum current of motor / motor</u>				
		rated current *	the setting value				
		When TL and	SG are open-circuited, the TL1 options				
		are as follows:					
		TL and	Torque limit				
		SG	l'orque limit				
		Open- circuit	Torque limit value PA05				
		Short-	If PC25 > PA05, TL1=PA05				
		circuit	If PC25 < PA05, TL1=PC25				
	<u> </u>			0			
PA06	CMX	Electronic gea	r ratio numerator	CoE.Pr	1	1	N/A
		Note1: In CoE	mode, same as CoE Object 6091-01h			~	
		cycling.	mode, changes become valid after power			220	
PA07	CDV	Electronic gea	r ratio denominator	CoE.Pr	1	1	N/A
	(▲)	Incorrect settir	ng of E-gear ratio will cause servo motor			~	
		burst, so you s	should set parameter when servo is OFF.			226	
		To set the corr	mand nulse input ratio				
		command pulse inp	CMX position command				
		fl	CDV $f_{2}=f_{1} \cdot CMX$				
			CDV				
		Note1: Restric	tive condition: 1/50 < (CMX/CDV) < 64000				
		Note2: In CoE	mode, same as CoE Object 6091-02h				
		Note3: in CoE	mode, changes become valid after power				
		cycling.					

Pr.No	Abbr	Function and desc	ription	Control	Default	Range	Unit	
			•	mode	value			
PA08	HSPD1	Homing high speed option 1		Pr	100	1	rpm	
		HSP1				~		
						2000		
		HSP2						
PA09	HSPD2	Homing high speed option 2		Pr	20	1	rpm	
		······································						
						500		
PA10	RES1	Regenerative resistor value		CoE.	Depends	10	Ohm	
				Pr.S	on	~		
		Madal	Default value		model,	750		
					refer to			
			400		the left			
		75000 1100	4012		table			
PA11	RES2	Regenerated resistor capacity		CoE.	Depends	0	Watt	
		Model	Default value	Pr.S	on	~		
		Below 400W	20W		model,	3000		
		750W~1KW	40W		refer to			
					the left			
		In position range:			table	0	nulaa	
FAIZ		In position control mode, when the	ne deviation between	COE.FI	on	~	puise	
		the position command and the ac	tual motor position is		model	2 24		
		less than the INP setting, the DO	will output INP signal.		refer to	-		
		Encoder type	default		the left			
		17bit magnetic encoders	1310		table			
		24bit optical encoder	167772					
PA13		Reserved						
~								
PA14								
PA15	CRSHA	Motor crash protection level(torque	e percentage)	CoE.	250	0~300	%	
		Set protection level (percentage to	o rated torque,	Pr.S				
		0=disabled, 1 or above =enabled)						

Pr.No	Abbr	Function and description		Control mode	Default value	Range	Unit		
PA16	CRSHT	Motor crash protection level (protection time)		CoE.	500	0	ms		
		To set protection time.		Pr.S		~			
		When reaching the protection level, the AL.20 wil	l occu	r		1000			
		after taken the PA16 setting protection time.							
PA17	OVL	Output overload warning level		CoE.	120	0	%		
		If the setting value is 0~100 and the servo motor	output	Pr.S		~			
		exceeds this level, the warning signal will be activ	vated.			120			
		PS: the function is disabled when the value is over							
PA18	OVS	Over speed protection level		CoE.	6300	1	rpm		
		If the feedback speed exceeds the setting value,	the feedback speed exceeds the setting value, AL.06						
		will occur.			6500				
PA19	OVPE	Position deviation exceed output level	CoE.	Depends	1	pulse			
		when the position deviation exceeds the setting	value	, Pr	on model	~			
		AL.08 will occur.		and refer	2 ³¹ -1				
		Encoder type Default value			to the left				
		17bit magnetic encoders 3*2 ¹⁷		table					
		24bit optical encoder 3*2 ²⁴							
PA20		Reserved							
~ PA21									
PA22	DBF	Dynamic brake control function		CoE.	0	0~1	N/A		
	(*)	Set the dynamic brake operation if an alarm occu	rs.	Pr.S					
		0: dynamic brake is enabled and stops	motor	-					
		immediately.							
		1: dynamic brake is disabled and motor will be	in free	9					
		run state.							
PA23	MCS	Memory write-inhibit function		CoE.	0	0~2	N/A		
	(∎)	PA23=0 (All parameters can be written to EEF	PROM	, Pr.S					
		including PA23.)							
		PA23=1 (All parameters will not be written to EEF	PROM	,					
		Note: PA23 will be set to 0 automatically after	powe	-					
		cycling)							
		PA23=2(ONLY PA23 can be written to EEPROM	. Note						
		the setting value stays as 2 after power cycling)							
		Note1: When using communication write parar	neters	9					
		set PA23=2 to prevent from writing continuously	which						
		would reduce EEPROM lifetime.							

Pr.No	Abbr	Function and description	Control	Default	Range	Unit
ΡΔ24		Reserved	moue	value		
~						
PA27						
PA28	ABS	Absolute encoder setting.	CoE.	0000h	0000h	N/A
	(*)	0: incremental operation, and absolute motors can be	Pr.S		~	
		operated as incremental motors.			0001h	
		1: absolute operation				
PA29	CAP	Absolute position reset	CoE.	0000h	0000h	N/A
	(∎)	If set PA29 to 1, the current absolute position of the	Pr.S		~	
		encoder will be reset to 0, which is the same as using			0001h	
		DI:ABSC to reset the coordinate.				
PA30	UAP	Update encoder absolute position	CoE.	0	0	N/A
	(∎)	If PA30=1, update the encoder data to PA31~PA33, and	Pr.S		~	
		the pulse deviation is not cleared.			2	
		If PA30=2, update the encoder data to PA31~PA33, and				
		clear the pulse deviation, which means the current				
		position of the motor will be reset as the destination of				
		position command.				
PA31	APST	Absolute coordinate system status (read-only)	CoE.	0	0000h	N/A
		Bit0: 1 means the absolute position has lost, 0 means	Pr.S		~	
		normal.			001Fh	
		Bit1: 1 means low battery voltage, 0 means normal.				
		Bit2: 1 means the absolute revolution number				
		overflows, 0 means normal				
		Bit3: reserved (0)				
		Bit4: 1 means the absolute coordinate has not been set.				
		0 means normal.				
		Bit5 ~ Bit15: reserved (0)	0-5	0	0	
PAJZ	APR	Encoder absolute position (pulse number) (read-only)	Dre	0	0	puise
		The parameter displays the absolute position reedback	P1.5		~ 2 ²⁴	
		pulse number, and it is valid only in absolute			Ζ	
DV33		Encoder absolute position (number of revolutions)	CoE	0	32767	rov
FA33	AFF	(read-only)	Dr S	0	~	Iev
		The parameter displays the absolute position feedback	11.0		-32768	
		revolution number and it is valid only in absolute			02100	
		system(PA28=1).				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PA34		Reserved				
PA35	ATST	One-touch tuning execution	CoE.	0	0	N/A
	(∎)	(this function is forbidden to use as it is for factory	Pr.S.		~	
		test)			FF21h	
PA36	AOP3	One-touch tuning function option	CoE.	0000h	0000h	N/A
		0 z y x	Pr.S.		~	
		x: auto gain tuning function			0111h	
		x=0: disabled.				
		x=1: enabled.				
		y: automatic high-frequency resonance suppression				
		function				
		y=0: disabled				
		y=1: enabled				
		z: auto low-frequency vibration suppression function				
		z=0: disabled				
		z=1: enabled				
		Note 1: x=1 is necessary condition to enable one touch				
		tuning function before you can set high-frequency or				
		low-frequency suppression function				
		Note 2: if y=1, you should set PB27 to 0 when				
		one-touch tuning is completed.				
		Note 3: if z=1, you should set PB29 to 0 when one touch				
		tuning is completed.				
PA37	FNO3	Function option 3	CoE.	0000h	0000h	N/A
	(*)	(this function is forbidden to use as it is for factory	Pr.S.		~	
		test)			FFFFh	

Pr.No	Abbr		Function and desc	cription	Control mode	Default value	Range	Unit
PA38	FNO1	Motor rotatio	on direction and func	tion selection	CoE.	0000h	0000h	N/A
	(*)	uzy	/		P1.5		~ 1101b	
		x: to set mot	tor rotation direction					
		Setting	Servo motor ro	tation direction				
		value	Forward	reverse				
		0	CCW	CW				
		1	CW	CCW				
PA39		In absolute s power cyclin y: set forwar y=0: ST1 Of y=1: ST1 Of is invalid, set y=2: ST1 Of invalid, set y=2: ST1 Of invalid, set z=0: set of control. z=0: set of held. The dr u: mode swi u=0: the ZS switched u=1: the ZSI is switched. Reset	system, you must re ng if PA38.x is change of or reverse start in a N =>Forward, ST2 O FF => Forward, ST1 ervo lock is disabled. FF =>Reverse, ST1 (o lock is disabled. ck options when m bock is enabled and th bock is disabled, the s ive will control the ro tching options P signal will be refer P signal will not be re	-execute homing after ed. speed control. N =>Reverse ON => Reverse. ST2 ON =>Forward, ST2 is notor stops in speed e stop position is held. top position cannot be tation speed to 0rpm. red when the mode is				
FA39		Reserveu						
PA40	SPW	Special para	ameter write-in:		CoE.	0000h	0000h	N/A
	(▲)	When PA40	is set to 0x0088, th	ne servo will return to	Pr.S		~	
		the factory of	default value after a	bout 3 seconds. After			00FFh	
		that, you c cycling.	an operate the dri	ive only after power				

Pr.No	Abbr		Fu	unction	and de	scriptio	n		Control mode	Default value	Range	Unit
PA41		Reserve	ed									
PA42	BLK	Parame	ter grou	p write-i	nhibit se	etting			CoE.	0000h	0000h	N/A
	(*)	O: read	able an	d writab	ole				Pr.S		~	
		X: unre	adable a	and not	writabl	е					00FFh	
		Value	PA	PB	PC	PD	PE	PF				
		0000										
		(default			(C						
		value)										
		0001			0			X				
		0002		()							
		0003		0 X								
		0004	C	C		2	X					
		0005	0			Х						
		0006	Only PA and not	42 is w writable	ritable, t	the othe	rs is ur	nreadable				
		Note 1:	when the	e group	is unrea	idable ai	nd not v	writable, it	t			
		means t	that this	group is	hidden	from the	e panel.					
DA 40									0 5	00001	00001	N1/A
PA43		Encode	r resoll tor)	ution (I	nis is	an int	ernai	read-only	COE.	0003n	0000h	N/A
		parame	ler)						PI.5		~ 0002h	
											000311	

Dr No	Abbr	Eurotion and description	Control	Default	Panga	Unit
Pr.NO	NUCA	Function and description	mode	value	капуе	Unit
PA44	EGM	E-gear ratio option	Pr	0	0	N/A
	(*)	PA44 = 0: E-Gear ratio is default value (PA06/PA07).			~	
		PA44 = 1: E-Gear ratio is 1, (use position command			1	
		pulse number setting per revolution (PA45)).				
PA45	FBP	Position command pulse number setting per revolution.	Pr	10000	500	pulse
	(*)	When PA44 = 1, you can use PA45 to set the position			~	
		command pulse number per revolution.			10 ⁶	
PA46	CYCL	Reserved				
	(*)					
PA47	TLP	Positive torque limit	CoE.	5000	0	0.1%
		it is to limit the torque generated during forward rotation.	Pr.S		~	
		The unit is 0.1%. The calculation is as follows:			65535	
		Positive torque limit $=$ $\frac{motor max current}{motor rated current} * \frac{PA47}{30}$				
PA48	TLN	Negative torque limit	CoE.	5000	0	0.1%
		It is to limit the torque generated during reverse rotation.	Pr.S		~	
		The unit of setting value is 0.1%. The calculation is as			65535	
		follows:				
		Negative torque limit = $\frac{motor max current}{motor rated current} * \frac{PA48}{30}$				
PA49	FNO2	Function option 2				
	(*)	(this function is forbidden to use as it is for factory				
		test)				
PA50	MLVS	Multi-revolution limit setting	CoE.	0	0	rev
		It is to set the upper limit value of absolute revolution	Pr.S		~	
		number the range is $0 \sim +32767$			32767	
		For example, if PA50 is set to 9999, then the range of				
		PA33 (absolute revolution number) is 0~9999.				
		PA50=0: disabled this function, and enable AL.29				
		(absolute revolution number overflow).				
		PA50>0: enable this function and disable AL.29				
		(absolute revolution number overflow).				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PB01	NHF1	Frequency of machine resonance suppression filter 1	CoE.	1000	10	Hz
		It is to set the frequency of machine resonance	Pr.S		~	
		suppression filter 1. The diagram is as follows:			4000	
		Gain(db) NHD Frequency(HZ)				
PB02	NHD1	Attenuation rate of machine resonance suppression filter	CoE.	0	0	dB
		1. It is to set attenuation rate of machine resonance	Pr.S		~	
		suppression and it should be used together with NHF1.			32	
		0: disable the Notch filter function.				
PB03	NLP	Resonance suppression low-pass filter	CoE.	17	0	0.1m
		It is to set the time constant of resonance suppression	Pr.S		~	S
		low-pass filter.			10000	
PB04	PST	Position command filter time constant	CoE.Pr	3	0	ms
		It is to set the filter time constant of position command.			~	
		With an appropriate setting of PB04, it will run the motor			20000	
		more smoothly when the position command changes				
		abruptly.				
		Target position				
		The actual time to reach the target position is 5 times of PST.				
PB05	FFC	Position feed-forward gain	CoE. Pr	0	0	%
		If the system runs smoothly in position control, increase			~	
		PB05 value will reduce the position tracking deviation. If			200	
		the system resonance occurs, decrease PB05 value will				
		improve mechanical vibration.				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PB06	GD1	Load to motor inertia ratio	CoE.	70	0	0.1
		It's used to set ratio of load inertia to servo motor inertia.	Pr.S		~	times
		When PA02 is set to auto gain tuning mode 1, the tuning			1200	
		result will set in PB06 automatically.				
PB07	PG1	Position loop gain	CoE.Pr	45	4	rad/s
		Increasing PB07 improves the traceability to position			~	
		command and reduce the position deviation. But too			1024	
		large setting may cause noise and vibration. When using				
		auto gain tuning mode, PB07 will be set automatically.				
PB08	VG1	Speed loop gain	CoE.	183	40	rad/s
		Increasing PB08 improves the speed response. But too	Pr.S.		~	
		large setting may cause vibration and noise. When using			9000	
		auto gain tuning mode, PB08 will be set automatically.				
PB09	VIC	Speed integral gain	CoE.	34	1~	ms
		It sets the integral time constant of speed loop.	Pr.S.		1000	
PB10	VFG	Speed feed-forward gain value:	CoE.	0	0	%
		If the system runs smoothly in speed mode, increasing	Pr.S		~	
		PB10 reduces speed tracking deviation, and decreasing			200	
		PB10 can improve the vibration if resonance occurs.				
PB11	CDP	Gain switching option:	CoE.	0000h	0000h	N/A
	(*)	0 0 0 x	Pr.S.		~	
		x=0: disable gain switching function			0008h	
		x=1: switching when CDP is ON.				
		x=2: switching when position command frequency is not				
		less than CDS setting				
		x=3: switching when position deviation pulse is not less				
		than CDS setting.				
		x=4: switching when servo motor rotation speed is not				
		less than CDS setting.				
		x=5: switching when CDP is OFF.				
		x=o: switching when position command frequency is not				
		arye man CDO setury				
		CDS setting				
		x=8: switching when serve motor rotation speed is not				
		large than CDS setting				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PB12	CDS	Gain switching condition value:	CoE.	10	0~	pulse
		This value and unit vary according to the CDP setting.	Pr.S.		4000000	
PB13	CDT	Gain switching time constant	CoE.	1	0	ms
		The switching time constant is used for smooth gain	Pr.S.		~	
		switching, and it is used to set the time constant when			1000	
		switching the gain.				
PB14	GD2	Load to motor inertia ratio 2	CoE.	70	0~1200	0.1
		It is to set ratio of load inertia to motor inertia, which is	Pr.S.			times
		only valid during gain switching.				
PB15	PG2	Position loop gain change ratio	CoE. Pr	100	10	%
		It is to set position loop gain change ratio, and it is valid			~	
		only after the auto gain tuning function is disabled.			500	
PB16	VG2	Speed loop gain change ratio	CoE.	100	10	%
		This parameter is to set speed loop gain change ratio,	Pr.S.		~	
		and it is valid only after the auto gain tuning function is			500	
		disabled.				
PB17	VIC2	Speed integral gain change ratio	CoE.	100	10	%
		This parameter is to set speed integral gain change	Pr.S.		~	
		ratio, and it is valid only after the auto gain tuning			500	
		function is disabled.				
PB18	SFLT	Speed command low-pass filter time constant	CoE.S	0	0	ms
		The larger the value, the smoother the command curve			~	
		will be, but the response will also be slower.			1000	
		Note: 0 means this function is disabled.				
		target potisiton				
		63%				
		times of SELT				

Pr.No	Abbr	Function and description	Control	Default value	Range	Unit
PB19	TOC	Torque command filter time constant	CoF	0	0	ms
	lao	It is to set filter time constant of torque command. With	002		~	
		an appropriate setting, it runs the motor more smoothly			5000	
		when torque command changes abruptly.				
		63%				
		The actual time to track torque command is 5 times of TQC.				
PB20	SJIT	Speed feedback filter time constant	CoE.	0	0	0.1ms
		The parameter is to set speed feedback filter time	Pr.S		~	
		constant.			1000	
PB21	NHF2	Frequency of machine resonance suppression filter 2	CoE.	1000	10	Hz
		This parameter is the frequency of machine resonance	Pr.S		~	
		suppression filter 2, and its usage is same as PB01.			4000	
PB22	NHD2	Attenuation rate of machine resonance suppression	CoE.	0	0	dB
		filter 2. This parameter is to set the attenuation rate of	Pr.S		~	
		machine resonance suppression filter and it should use			32	
		together with NHF2.				
		Note: 0: disable the Notch filter function				
PB23	NDF	Motor noise suppression function	CoE.	0	0	N/A
		0: disable the function.	Pr.S		~	
		1: enable the function, which can improve the system			1	
		response				
PB24	VDC	Speed differential compensation	CoE.	980	0	N/A
		This parameter is to set speed differential	Pr.S.		~	
		compensation, it is enabled when DI terminal			1000	
		proportional control signal is ON.				
PB25	NHF3	Frequency of machine resonance suppression filter 3	CoE.	1000	10	Hz
		This parameter is the frequency of machine resonance	Pr.S		~	
		suppression filter 3, its usage is the same as PB01.			4000	

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PB26	NHD3	Attenuation rate of machine resonance suppression	CoE.	0	0	dB
		filter 3. This parameter is to set attenuation rate of	Pr.S		~	
		machine resonance suppression filter and it should			32	
		use together with NHF3.				
		Note: 0: disable the Notch filter function				
PB27	ANCF	Auto resonance suppression mode setting (Setting for	CoE.	0	0	N/A
		resonance suppression filters 1 and 2)	Pr.S		~	
		0: fixed.			2	
		1: fixed automatically after auto-suppression.				
		2: always auto-scan to search the resonance				
		frequency				
PB28	ANCL	Auto resonance detection level	CoE.	50	1	%
		If PB28 is larger, the resonance detection sensitivity is	Pr.S		~	
		lower; on the other hand, if PB28 is smaller, the			300	
		resonance detection sensitivity is higher.				
PB29	AVSM	Auto low-frequency vibration suppression mode	CoE. Pr	0	0	N/A
		0: fixed.			~	
		1: fixed automatically after auto-suppression.			1	
		Auto mode setting description: When you set the PB29				
		as 1, the servo drive will find the vibration frequency				
		and suppress it. If the vibration frequency cannot be				
		detected or the vibration frequency is stable, the				
		system resets PB29 to 0 and saves the vibration				
		frequency to PB31(VSF1) automatically.				
PB30	VCL	Low-frequency vibration detection level	CoE. Pr	50	1	pulse
		It is the detection level for auto low-frequency vibration			~	
		suppression. The lower the value, the more sensitive			8000	
		of the detection, but the system may also misjudge				
		noise or other low-frequency vibrations as frequencies				
		to be suppressed. If the value is high, the system is				
		less likely to misjudge, but if the vibration of the				
		machine is small, the system may not properly detect				
		low-frequency vibrations.				
PB31	VSF1	Low-frequency vibration suppression frequency 1	CoE. Pr	100	1	0.1Hz
		It is the first low-frequency vibration suppression			~	
		frequency. If PB32 is 0, the first low frequency			3000	
		vibration suppression filter is disabled				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PB32	VSG1	Low-frequency vibration suppression gain 1	CoE. Pr	0	0	N/A
		It is the first low-frequency vibration suppression gain.			~	
		Increasing the value can improve the position response.			15	
		If the value is too high, the motor may not operate				
		smoothly. The suggested value is 1.				
PB33	VSF2	Low-frequency vibration suppression frequency 2	CoE. Pr	100	1	0.1Hz
		It is the second low-frequency vibration suppression			~	
		frequency. If PB34 is 0, the second low frequency			3000	
		vibration suppression filter is disabled				
PB34	VSG2	Low-frequency vibration suppression gain 2	CoE. Pr	0	0	N/A
		It is the second low-frequency vibration suppression			~	
		gain. Increasing the value can improve the position			15	
		response. If the value is too high, the motor may not				
		operate smoothly. The suggested value is 1.				
PB35	FRCL	Friction compensation level	CoE.	0	0	%
		It is the level of friction compensation, which is the	Pr.S		~	
		percentage of the rated torque. Set the value to 0 to			100	
		disable the friction compensation function. Set the value				
		to 1 or above to enable the function.				
PB36	FRCT	Friction compensation smoothing time constant	CoE.	0	0	ms
		It is to set the smoothing time constant of friction	Pr.S		~	
		compensation.			1000	
PB37	FRCM	Friction compensation mode option	CoE.	0	0000h	N/A
		0 0 y x	Pr.S		~	
		x: zero speed friction compensation setting			0011h	
		x=0: zero speed friction compensation is enabled.				
		x=1: zero speed friction compensation is disabled.				
		y: automatic friction compensation setting				
		y=0: automatic friction compensation disabled.				
		y=1: automatic friction compensation enabled.				
PB38	FFCT	Position feed-forward filter time constant	CoE.	0	0	0.1ms
		It is to set the filter time constant of position feed-forward	Pr.S		~	
		gain.			1000	

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PB39		Reserved				
PB40		Reserved				
PB41		Reserved				
PB42		Reserved				
PB43		Reserved				
PB44	PPD	Position compensation gain Increasing PPD can improve position command tracking response and system settling time, but if the setting is too large, it may cause machine vibration or overshoot.	CoE. Pr	0	0 ~ 500	rad/s
PB45	NHF4	Frequency of machine resonance suppression filter 4 This parameter is to set the frequency of machine resonance suppression filter, its usage is same as PB01.	CoE. Pr.S	1000	10 ~ 4000	Hz
PB46	NHD4	Attenuation rate of machine resonance suppression filter 4. This parameter is to set attenuation rate of machine resonance suppression filter and it should use together with NHF4. Note: 0: disable the Notch filter function.	CoE. Pr.S	0	0 ~ 32	dB

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PB47	NHF5	Frequency of machine resonance suppression filter 5	CoE.	1000	10	Hz
		This parameter is to set the frequency of machine	Pr.S		~	
		resonance suppression filter, its usage is same as			4000	
		PB01.				
PB48	NHD5	Attenuation rate of machine resonance suppression	CoE.	0	0	dB
		filter 5. This parameter is to set attenuation rate of	Pr.S		~	
		machine resonance suppression filter and it should use			32	
		together with NHF5.				
		Note: 0: disable Notch filter function.				
PB49	DST	External disturbance suppression gain	CoE.	0	0	N/A
			Pr.S		~	
					100	
PB50	MVF	Position command average filter time constant	CoE. Pr	0	0	ms
					~	
					50	
PB57	TOF	Vertical axis torque compensation	All	0	3000	0.1%
	(*)	For applications using vertical axis with large loads,			~	
		TOF can be used to compensate the torque command.			-3000	
		It can improve the load axis vibration when the brake is				
		released and the SON is turned on.				

Pr.No	Abbr	Function and description	Control	Default	Range	Unit
	OT A	Acceleration time constant		200	0	
FCUI	SIA	This parameter sets the time for the meter to accelerate	F1.3.	200	0	1115
		from 0 to motor rated speed. For example, if the rated			65550	
		speed of the servo motor is 3000rpm, and this			00000	
		parameter is set to 3000 (3s) and when the speed				
		command is 1000rpm, it will take 1 second for the motor				
		to accelerate from 0rpm to 1000rpm. The acceleration				
		time in IOG mode is also set by PC01				
		rated speed speed rated speed rated speed time STA				
PC02	STB	Deceleration time constant	Pr.S.	200	0	ms
		This parameter sets the time for the motor to decelerate			~	
		from motor rated speed to 0. The deceleration time in			65550	
		JOG mode is also set by PC02.				
PC03	STC	S-curve acceleration / deceleration time constant	Pr.S.	0	0	ms
		The S-curve acceleration/deceleration function is to use			~	
		a three-step curve of acceleration or deceleration, which			10000	
		can make motor run smoother. An appropriate STC				
		setting can improve the stability of the motor.				
		There will be a slight acceleration/deceleration time				
		deviation after applying S curve.				
		The acceleration time = STA + STC.				
		The deceleration time = STB + STC.				
		Rated speed				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PC04	JOG	JOG speed command	CoE.	300	0	rpm
		It's to set JOG speed in JOG operation mode.	Pr.S		~	
					6000	
PC05	SC1	Internal speed command 1(limit 1)	S	100	-6000	rpm
		In speed mode, PC05 is the speed command 1.			~	
		In torque control mode, PC05 is speed limit 1 regardless	;		6000	
		of direction.				
		The internal speed command maximum value is the				
		maximum motor speed.				
PC06	SC2	Internal speed command 2 (limit 2)	S	500	-6000	rpm
		In speed mode, PC06 is the speed command 2.			~	
		In torque control mode, PC06 is speed limit 2 regardless	;		6000	
		of direction.				
		The internal speed command maximum value is the				
		maximum motor speed.				
PC07	SC3	Internal speed command 3 (limit 3)	S	1000	-6000	rpm
		In speed mode, PC07 is the speed command 3.			~	
		In torque control mode, PC07 is speed limit 3 regardless			6000	
		of direction.				
		The internal speed command maximum value is the				
		maximum motor speed.				
PC08	SC4	Internal speed command 4 (limit 4)	S	200	-6000	rpm
		In speed mode, PC08 is the speed command 4.			~	
		In torque control mode, PC08 is speed limit4 regardless			6000	
		of direction.				
		The internal speed command maximum value is the				
		maximum motor speed.				
PC09	SC5	Internal speed command 5 (limit 5)	S	300	-6000	rpm
		In speed mode, PC09 is the speed command 5.			~	
		In torque control mode, PC09 is speed limit 5 regardless			6000	
		of direction.				
		The internal speed command maximum value is the				
		maximum motor speed.				

Pr No	Abbr	Function and description	Control	Default	Range	Unit
1.110		i unction and description	mode	value	Range	Onit
PC10	SC6	Internal speed command 6 (limit 6)	S	500	-6000	rpm
		In speed mode, PC10 is the speed command 6.			~	
		In torque control mode, PC10 is speed limit 6 regardless			6000	
		of direction.				
		The internal speed command maximum value is the				
		maximum motor speed.				
PC11	SC7	Internal speed command 7 (limit 7)	S	800	-6000	rpm
		In speed mode, PC11 is the speed command 7.			~	
		In torque control mode, PC11 is speed limit 7 regardless			6000	
		of direction.				
		The internal speed command maximum value is the				
		maximum motor speed.				
PC12		Reserved				
~						
PC15						
PC16	MBR	Electromagnetic brake output delay time	CoE.	100	-1000	ms
		It is to set the delay time from the SON signal OFF to	Pr.S		~	
		the electromagnetic brake interlock signal (MBR) OFF.			1000	
PC17	ZSP	Zero speed range:	CoE.	50	0	rpm
		This parameter sets the speed range when zero speed	Pr.S		~	
		signal output.			10000	
		If the forward/reverse rotation speed is lower than PC17				
		setting value, the DO:ZSP will be on.				
PC18	COP1	Stop option and power interruption restart option	CoE.	0010h	0000h	N/A
	(*)	0 0 y x	Pr.S		~	
		x: power interruption and restart option			0011h	
		When the power supply falls below the rated allowable				
		voltage, an under voltage alarm occurs and the servo				
		motor stops. When the power supply voltage returns to				
		normal, the servo motor can be started without resetting				
		the alarm.				
		x=0: invalid x=1: valid				
		<u>y: motor stop mode option</u>				
		Servo stop option in speed control mode.				
		y=1: motor stops immediately				
		y=0: motor decelerates to stop				

Pr.No	Abbr	Function and description	Control	Default	Range	Unit
			mode	value	lange	
PC19	COP2	Alarm history clear option and overload early warning	CoE.	0000h	0000h	N/A
	(*)	option.	Pr.S		~	
		u z y x			0111h	
		x=0: Alarm history not cleared				
		x=1: Alarm history cleared				
		When X=1, the clearing will be performed after the next				
		power on, and x will be set to 0 automatically after the				
		clearing is completed.				
		y=0: no action;				
		y=1: Motor stops immediately when warning occurs				
		z: AL.13 display option (only for CoE mode).				
		z=0: display AL.13				
		z=1: AL.13 is not displayed.				
		u: panel display options after the alarm is cleared.				
		u=0: stays at the alarm screen (show AL).				
		u=1: returns to the previous display screen.				
PC20	SNO	Servo drive communication device number	CoE.	1	1	N/A
	(*)	You can manually set the servo drive device number	Pr.S		~	
		during communication, and different drives should be			65535	
		set to different addresses.				
PC21	CMS	Communication mode option	CoE.	0010h	0000h	N/A
	(*)	0 0 y x	Pr.S		~	
		y: communication reply delay time (the changes			0011h	
		become valid after power cycling)				
		y=0: within 1ms delay y=1: delay over 1ms.				
PC22		Reserved				
PC23	SIC	Serial communication timeout option	CoE.	0	0	S
		The range of PC23 is 1~60 seconds. If the value is 0,	Pr.S		~	
		the timeout check is invalid.			60	

Pr.No	Abbr	Function and description	Control	Default	Range	Unit	
			mode	value			
PC24	DMD	MD Drive status display option		CoE.	0000h	0000h	N/A
	(*)	(*) 0 y x		Pr.S		~	
		x: display option after power on(hexadecimal)				0111h	
		x=0: motor feedback pulse number (high 5-digit)					
		(before E-Gear ratio)					
		x=1: motor feedba	x=1: motor feedback pulse number (low 5-digit)				
		(before E-Gear ratio)	(before E-Gear ratio)				
		x=2: input pulse number of pulse command (high					
		5-digit) (before E-Gear ratio)					
		x=3: input pulse number of pulse command (low					
		5-digit) (before E-Ge					
		x=4: pulse comman					
		(before E-Gear ratio)					
		x=5: pulse command	x=5: pulse command input frequency				
		x=6: current motor s	x=6: current motor speed				
		x=8: speed comman					
		x=A: torque commar					
		x=B: effective load ra	x=B: effective load rate				
		x=C: peak load rate					
		x=D: DC Bus voltage					
		x=E: load inertia ratio					
		x=F: instantaneous t					
		x=10: regenerative load rate					
		x=11: the absolute p					
	Z phase						
	y: drive status display on panel after power on						
		y=1: display status according to PC24.x.					
		y=0: displays status	according to the control mode				
		Control mode	Panel display after power on				
		Position	Motor feedback pulse				
		Desition and succed	number (Note 1)				
		Position and speed	Motor teedback pulse				
			number(ivote 1)/motor speed				
		Note 1: display the motor foodback pulse number offer					
		Note 1: display the motor feedback pulse number after					

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PC25	TL2	Internal torque limit 2	CoE.	100	0	%
		The description is the same as PA05. In addition, when	Pr.S		~	
		using the internal parameter torque limit together with			100	
		external TL signal, different torque limits can be				
		selected. Please refer to PA05 description.				
PC26		Reserved				
PC27		Reserved				
PC28 ~ PC31		Reserved				
PC32	CMX2	Electronic gear ratio numerator 2 PC32 is to set the 2nd group of electronic gear ratio	CoE. Pr	1	1 ~ 2 ²⁶	N/A
		Refer detail to 7.3.3			-	
PC33	CMX3	Electronic gear ratio numerator 3 PC33 is to set the 3rd group of electronic gear ratio numerator.	CoE. Pr	1	1 ~ 2 ²⁶	N/A
PC34	CMX4	Electronic gear ratio numerator 4 PC34 is to set the 4th group of electronic gear ratio numerator.	CoE. Pr	1	1 ~ 2 ²⁶	N/A
PC35 ~ PC37		Reserved				
Pr.No	Abbr	Function and description	Control	Default	Range	Unit
-------	------	---	---------	---------	-------	------
			mode	value		
PC38	ESYC	EtherCAT Sync abnormal value setting	CoE	0	0	N/A
		It is to set the abnormal detection value for EtherCAT			~	
		communication.			65535	
		PC38 = 0: invalid.				
		PC38 > 0: detect the number of Sync signal				
		abnormalities.				
		Note: By setting PC38 > 0, the number of missing Sync				
		signals during communication will be detected and				
		AL.84 will occur.				
PC39	ESS	EtherCAT communication address option	CoE	0	0	N/A
	(*)	It is to set the EtherCAT communication slave node			~	
		address source.			65535	
		PC39 = 0: SII				
		PC39 > 1: PC39				
		If the value of PC39 is greater than 0, this parameter is				
		enabled after power cycling. The EtherCAT slave node				
		address is determined by the value of PC39.				
PC40	MBR2	Delay time for enabling the magnetic brake(MBR) when	All	0	0	
		Servo ON.			~	ms
		This parameter is to set the delay time from Servo On			1000	
		status to the activation of the magnetic brake signal				
		(MBR) after the SON ON initialization time.				
PC41		Reserved				
PC42		Reserved				
DC 42		Decerved				
PC43		Reserved				
PC44		Reserved				
~						
PC99						

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PD01	DIA1 (*)	Input signal automatic ON option u z y x x=0: the open/short status of SON-SG is controlled by the external circuit of the drive. x=1: SON-SG is auto short-circuited internally without external wiring. y=0: the open/short status of LSP-SG is controlled by the external circuit of the drive. y=1: LSP-SG is auto short-circuited internally without external wiring. z=0: the open/short status of LSN-SG is controlled by the external circuit of the drive. z=1: LSN-SG is auto short-circuited internally without external wiring. u=0: the open/short status of EMG-SG is controlled by the external circuit of the drive. u=1: EMG-SG is short-circuited internally without external wiring.	CoE. Pr.S	0000h	0000h ~ 1111h	N/A
PD02 PD03	DI1 (*) DI2 (*)	Input signal option 1: To assign the input signal of CN1-10. The input signal varies in different control modes, so the input signal of CN1-10 can be assigned in different modes by setting PD02. Input signal option 2 To assign the input signal of CN1-9.	CoE. Pr.S CoE. Pr.S	0000h	0000h ~ 003Fh 0000h ~	N/A N/A
	- Dia	CN1-9 can be assigned to any input signal, and its parameter setting method is the same as PD02. Please refer to PD02 description		0000	003Fh	
PD04	(*)	Input signal option 3 To assign the input signal of CN1-8. CN1-8 can be assigned to any input signal, and its parameter setting method is the same as PD02. Please refer to PD02 description	CoE. Pr.S	0000h	0000h ~ 003Fh	N/A

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PD05	DI4	Input signal option 4	CoE.	000Bh	0000h	N/A
	(*)	To assign the input signal of CN1-7.CN1-7 can be	Pr.S		~	
		assigned to any input signal, and its parameter setting			003Eh	
		method is the same as PD02, refer to PD02 description.				
PD06	DI5	Input signal option 5	CoE.	0018h	0000h	N/A
	(*)	To assign the input signal of CN1-11. CN1-11 can be	Pr.S		~	
		assigned to any input signal, and its parameter setting			003Fh	
		method is the same as PD02, refer to PD02 description.				
PD07		Reserved				
~PD09						
PD10	DO1	Output signal option 1	CoE.	0000h	0000h	N/A
	(*)	PD10 is used to assign output signal of CN1-1. The	Pr.S		~	
		output signal varies in different control modes, so the			002Fh	
		output signal of CN1-1 can be assigned in different				
		modes by setting PD10.				
PD11	DO2	Output signal option 2	CoE.	0000h	0000h	N/A
	(*)	PD11 is used to assign output signal of CN1-3. CN1-3	Pr.S		~	
		can be assigned to any output signal, the setting is the			002Fh	
		same as PD10. Please refer to PD10 description.				
PD12	DO3	Output signal option 3	CoE.	0002h	0000h	N/A
	(*)	PD12 is used to assign output signal of CN1-5. CN1-5	Pr.S		~	
		can be assigned to any output signal, the setting is the			002Fh	
		same as PD10. Please refer to PD10 description.				
PD13		Reserved				
~PD14						
PD15	DIF	Digital input filter time option	CoE.	0002h	0000h	N/A
	(*)	x=0: disable, x=1: 2ms, x=2: 4 ms,	Pr.S		~	
		x=3: 6 ms, x=4: 8ms, x=5: 10 ms			0005h	
PD16	SDI	Digital input source control option	CoE.	0000h	0000h	N/A
	(∎)	This parameter can be used as DI source control option.	Pr.S		~	
		Each bit of this parameter determines the signal input			0FFFh	
		source of one DI. Bit0 ~ Bit04 is correspond to DI1 ~				
		DI5. Bit setting shows as below:				
		0: input contact status is controlled by external				
		hardware terminal.				
		1: input contact status is controlled by communication				
		(PD25).				
		For DI pin function assignment, please refer to:				
		DI1 ~ DI5: PD02~PD06				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PD17	DOP1 (*)	The servo emergency stop mode setting when LSN or LSP signal is off.	CoE. Pr.S	0000h	0000h ~ 0001h	N/A
		<u>x: options of emergency stop</u> x=0: stop immediately. x=1: decelerate to stop according to the decelerate time constant setting. The decelerate time constant parameter is PF81(deceleration time for automatic				
PD18	DOP2 (*)	protection). It is to set CR signal clear method. $\boxed{0 \ 0 \ x}$ x=0: clear the position pulse command and feedback pulse deviation. When CR is triggered at the rising edge, the deviation will be cleared to 0. x=1: clear the position pulse command and feedback pulse deviation. When CR-SG is short-circuited, the deviation will be kept clear to 0. x=2: stop the positioning function. When the CR -SG rising edge is triggered, the motor will decelerate to stop according to the deceleration time and the remaining pulses will be ignored. When CTRG-SG is short-circuited again, the current position command will be executed (Pr mode).	CoE. Pr	0000h	0000h ~ 0002h	N/A

Pr.No	Abbr		Func	tion and	descrip	tion		Control mode	Default value	Range	Unit
PD19	DOP3	Alarm code	output o	ption:				CoE.	0000h	0000h	N/A
	(*)	0 0 0	x					Pr.S		~	
			·							0001h	
		x setting			Pin num	ber					
			CN ²	1-1	CN1-3	CN1-	5				
		0	DO fur	nction	DO funct	ion DO fund	ction				
		1	Outp	out an al	arm code	when an alar	m				
				occurs							
		Note: DO fu	nction is	determi	rmined by PD10 ~ PD12 setting						
		(Note) Alarm	code	e Alarm						
		CN1-1	CN1-3	CN1-5	1-5 display						
					Serial						
					AL.09	AL.09 communication					
						error					
						Serial					
		0	0	0	AL.0A	communication					
						timeout					
					AL.0E	IGB1 overheat					
					AL.UF	Memory error					
		0	0	1	AL. 10	Under voltage	•				
			0	1		Over voltage	C				
		0	1	0	7 12:01	Regeneration	n				
					AL.04	error					
		0	1	1	AL.03	Over current					
		1	0	0	AL.05	Overload					
					AL.06	Over speed					
					AL.07	Pulse comma	and				
		1	0	1		abnormal					
						Position					
					AL.08	deviation					
						Encoder erro	r 1				
		1	1	0	AL OC	Encoder erro	or 2				
			1	1	AL.11	Motor misma	tch				
		Note: 0: OF	F, 1: ON	1			1				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PD20	DOP4	Operation option when the alarm reset signal is	CoE.	0000h	0000h	N/A
	(*)	short-circuited.	Pr.S		~	
		0 0 y x			0011h	
		x = 0: PWM signal is off(motor is not magnetized)				
		x = 1: PWM signal is on(motor is magnetized)				
		y: ALM output option when a warning occurs				
		y = 0: ALM disabled.				
		y = 1: ALM enabled.				
PD21 ~PD24		Reserved				
PD25	ITST	Communication control DI status (HEX):	CoE.	0000h	0000h	N/A
	(∎)	Set the parameter to determine the on/off state of Digital	Pr.S		~	
		Inputs (total 5 DIs) by communication. The bit0~bit5			0FFFh	
		correspond with DI1~ DI5.				
		In binary bits: 0: DI is OFF 1: DI is ON.				
		PD16 selects the input source, either from external				
		hardware terminals (DI1~DI5) or communication				
		commands (correspond to Bit 0 ~ 4 of PD25). If the bit of				
		PD16 is 1, which means the source is communication DI				
		(PD25), If not, the source is hardware terminal DI.				
		If the value read from PD25 is 0x0011, it indicates that				
		DI1 and DI5 are ON eventually.				
		If the value written into PD25 is 0x0011, which means				
		that the communication contacts DI1 and DI5 are ON. but				
		it does not mean that the terminal signals of the DI1 and				
		DI5 are ON, which are determined by PD16 setting value.				
		For the function definition of DI(DI1~DI5), you can refer to				
		PD02~PD06.				
		Example 1:				
		If set PD16 to 001Fh and PD25 to 0000h. then all				
		DI1~DI5 will be controlled by the communication, and				
		DI1~DI5 are OFF. Even the external actual hardware pins				
		are all activated with SG, the DI signal will not be				
		affected, it still will be controlled by the communication.				
		and the DI contacts DI1~DI5 are still all OFF.				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PD27	DOD	Definition of output signal contact	CoE.	0004h	0000h	N/A
	(*)	PD27 defines the output contact of DO1~DO3 signal.	Pr.S		~	
		The bit0~bit3 corresponds to DO1~DO3 pins respectively			003Eb	
		and A contact or B contact are optional.			000111	
		0: The output contact is normally open(A contact).				
		1: The output contact is normally closed(B contact).				
PD28	мсок	Operation option of DO:MC_OK	Pr	0000h	0000h ~	N/A
		x=0: output status is not retained.			0011h	
		x=1: output status is retained.			001111	
		y=0: disable position deviation warning AL.1B.				
		v=1: enable position deviation warning AL.1B.				
		DI: CTRG				
		DO: CMDOK				
		output position INP=ON, indicates				
		DO: INP completed.				
		DO: MC_OK take CMD_OK and				
		INP to ANU				
		1.Command Trigger: Pr new command is enabled and				
		Command 3 output while clearing signals 2, 4, 5, 6.				
		2.CMD OK: determine if command 3 output is				
		completed. It can be set delay time(DLY).				
		3.Command Output: output the curve of position				
		command based on the acceleration / deceleration				
		setting.				
		4.INP: whether the positioning deviation of the drive is				
		within the range setting by PA12!				
		5.MC OK: command output and servo positioning are				
		both completed, which indicate that DO.CMD OK and				
		DO.INP are both on.				
		6.MC_OK (retain output): same as 5, but once the output				
		is ON (7), it is retained, regardless of signal 4 status.				
		7.Selection of the output signal 5 or 6 is specified by				
		PD28.X.				
		8.Position deviation: If 4 (or 5) turns OFF after 7 has				
		occurred, the position is deviated and AL.1B can be				
		triggered. The parameter PD28.Y sets whether this				
		warning is enabled or not!				

DuNo	Abbr	Eurotian and description	Control	Default	Denmo	11
Pr.NO	ADDr	Function and description	mode	value	Range	Unit
PD29	DID	Software DI A/B contact setting	CoE.	0000h	0000h	N/A
		1. The corresponding DI Bit is 0.	Pr.S		~	
		If DI is set to LSP/LSN/EMG signal, it's B contact.			FFFFh	
		If DI is set to a non-LSP/LSN/EMG signal, it's A contact.				
		2.The corresponding DI Bit is 1.				
		If DI is set to LSP/LSN/EMG signal, it's A contact.				
		If DI is set to a non-LSP/LSN/EMG signal, it's B contact.				
		Note: If some DI contact is set to communication				
		contacts(refer to PD16), PD29 is invalid.				
PD30		Reserved				
~						
PD31						
PD32	SDLY	SERVO ON delay time	All	0	0	ms
	(*)	To set the SV-ON delay time.			~	
					3000	
PD33	SFDO	Software DO register	CoE.	0000h	0000h	N/A
		Bit value: 0 means output LOW level.	Pr.S		~	
		1 means output HIGH level			FFFFh	
		bit00: corresponds to DO code 0x20				
		bit01: corresponds to DO code 0x21				
		bit02: corresponds to DO code 0x22				
		bit03: corresponds to DO code 0x23				
		bit04: corresponds to DO code 0x24				
		bit05: corresponds to DO code 0x25				
		bit06: corresponds to DO code 0x26				
		bit07: corresponds to DO code 0x27				
		bit08: corresponds to DO code 0x28				
		bit09: corresponds to DO code 0x29				
		bit10: corresponds to DO code 0x2A				
		bit11: corresponds to DO code 0x2B				
		bit12: corresponds to DO code 0x2C				
		bit13: corresponds to DO code 0x2D				
		bit14: corresponds to DO code 0x2E				
		bit15: corresponds to DO code 0x2F				
		Note:PD10~PD12 should be set to corresponding DO				
		code.				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PD34		Reserved				
~						
PD36						
PD37	FNO5	Function option 5	Pr. Pt	0000h	0000h	N/A
	(*)	0 0 0 X	S		~	
		When X=1, the left and right position limit alarm codes	5		0001h	
		are displayed respectively as follows:				
		When LSP_OFF/LSN_ON, displays AL.13.				
		When LSP_ON/LSN_OFF, displays AL.65.				
		When LSP_OFF/LSN_OFF, displays AL.13.				

Pr.No	Abbr		Functio	n and de	scription		Contro mode	Default value	R	ange	Unit	
PE01	ODEF	Definition	of homing	1			Pr	0000000)h 00	00000h	N/A	
		The detail	led descri	otion is as	follows:					~		
									10F	FFF3Fh		
		31~28	27~24	23~20	10~16	15~12	11~8	7∼0 hit]		
		BOOT		23/20 DI Y	-	DFC1	ACC	PATH				
		PATH:	: path type	e(bit0~bit7	 `)]		
		0: Stop: h	oming cor	nplete and	d then sto	р.						
		1~63: Aut	o: homing	complete	d and aut	omatically	execute	the specified	path.			
		• ACC:	accelerat	on time s	election be	etween the	e range 0 [,]	~F, which is	corres	pond to		
		PF49~PF	64.									
		DEC1	: decelera	ation time	selection	for the firs	t homing,	DEC setting	g rang	e is 0∼F	, which	
		is corresp	ond to PF	49~PF64								
		DLY: delay time selection between the range 0~F, which is correspond to PF65~PF).	
		• воот	: homing	option whe	en drive is	powered	on.					
		0: do no	ot execute	homing.								
		1: execu	ute homin	g automat	ically (Afte	er powerin	g up, the	first SERVO	ON).			
		 Apart 	from the a	bove defi	nitions, th	e related s	ettings fo	r homing als	o incl	ude:		
		1. PA04	homing r	node.								
		2. PA08	8∼PA09 sp	eed settir	ng of homi	ng.						
		3. PE02	2: ORG_D	EF is the	coordinate	e of the ori	gin and n	nay not be 0	This	function	is	
		used	as a shift	of the coo	ordinate.							
		A: In SDC	series, P	A04 is not	t able to c	ontrol the o	drive bacl	k to origin af	er hor	ming, but	t it is	
		able to ac	complish	by anothe	r method.	After the o	origin (sei	nsor or Z) is	found	, the serv	∕o has	
		to deceler	lecelerate to stop. The stop position exceeds the origin by a short distance:									
		If returning	g to the oi	igin is not	needed,	set PATH t	to 0.					
		If returning	g to the oi –	igin is nee	eded, set l	PATH to a	non-zero	value and s	et PAI	3S =		
		ORG_DE	F.		-							
		B. If the o	rigin is fou	nd (senso	or or Z), ar	nd you war	nt the serv	/o to move a	n offse	et S and	define	
		this absolution	ute positic		nng, then $\mathbf{p} = \mathbf{P}$		m-zero al	iu sel UKG_	DEF	- 1 - 3, 8	DUF	
		inis absol	ute positio	n comma	na = P.							

Pr.No	Abbr		Function and descriptionControlDefault modeRange								Range	Unit			
PE02	ODAT	Origin do 31~1 O	efinitio 6 RG_D	n 15~0 EF(32t	bit bit)					Pr	-	0		(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PE03	PDEF1	PATH#1 The deta Refer to operatio	definit ailed pa Chapt n in the	ion aramet er 8 fc e PR m	ers des r a det ode.	criptic ailed	on are desci	e as fo	ollows ı of th	Pr :: ie		00000	000h	00000000 ~ FFFFFFFF	h N/A
		PE03 PE04	31~	28 2	8 27~24 23~20 19~16 15 – DLY – DATA(32bi			15~12 - 2bit)	11	~8 -	7~4 OP	3~0 bi T TYPE			
			РЕ, ОР 7	0 P 6	T optio	on	4 BIT				Path type 3~0 BIT				
			- CN	UNIT 1D		го _Р	INS	5 1 2 w 3 n	 1: Constant speed control. 2: Single positioning control, It stops when finished. 3: AUTO positioning control. It loads to next path automatically when finished 					It stops t loads the finished.	
			-	-	- AUT	ГО	INS INS	5 7 5 8 p	: JUN : Writ ath.	IP jump e specifi	P jump to the specified path. specified parameter to specified				
		• TY • IN • O\ • AL • CN • DL	(PE: S: /LP: JTO: MD: _Y:	Whe DI.S Whe Allow mode Exec comp Refe 0 ~ F after relate	n 1, 2, o FOP an n this P v the ne e! DLY e! uting th oleted r to Cha can us the exe ed para	or 3 is id soft PATH i ext part is invation is invation meter imeter	s exec tware is exe th to alid w xt PR 7 PR the d m of t rs: PF	cuted, limits ecuted overla /hen th path a comn elay ti his pa =65~P	it car , , the p, but he ove autom nand ime nu ath. Th 2F80).	n be inte previous t overlap erlap is e natically instructio umber (4	rrup s pa o ca exe wh on. 4 Bl nal	oted ar oth is in onnot b cuted i en the IT). It is INS is	nd sto iterru e set n pos curre s the invali	opped by pted. in speed sition ent PR is delay time id! (DLY	

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PE04	PDAT1	PATH#1 data	Pr	0	Using the non-indexing	N/A
		PE03 defines the property of the	,		position control	
		target point, PE04 defines the target			(-2 ³¹) ~ (2 ³¹ -1)	
		position of PE03 or the target			Using the indexing	
		jumping PATH_NO.			position control	
		Note: PATH: Program			(0~16777216)	
PE05	PDEF2	PATH#2 definition	Pr	00000000h	000000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE06	PDAT2	PATH#2 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE07	PDEF3	PATH#3 definition	Pr	00000000h	000000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE08	PDAT3	PATH#3 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE09	PDEF4	PATH#4 definition	Pr	00000000h	000000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE10	PDAT4	PATH#4 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE11	PDEF5	PATH#5 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE12	PDAT5	PATH#5 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE13	PDEF6	PATH#6 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE14	PDAT6	PATH#6 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE15	PDEF7	PATH#7 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE16	PDAT7	PATH#7 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE17	PDEF8	PATH#8 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PE18	PDAT8	PATH#8 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PE19	PDEF9	PATH#9 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PE20	PDAT9	PATH#9 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PE21	PDEF10	PATH#10 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PE22	PDAT10	PATH#10 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PE23	PDEF11	PATH#11 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PE24	PDAT11	PATH#11 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PE25	PDEF12	PATH#12 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PE26	PDAT12	PATH#12 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PE27	PDEF13	PATH#13 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PE28	PDAT13	PATH#13 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PE29	PDEF14	PATH#14 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PE30	PDAT14	PATH#14 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PE31	PDEF15	PATH#15 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PE32	PDAT15	PATH#15 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A

Pr.No Abbr	Abbr	C Function and description	Control	Default	Pango	Unit
		i unction and description	mode	value	Kange	Onit
PE33	PDEF16	PATH#16 definition	Pr	00000000h	000000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE34	PDAT16	PATH#16 data	Pr	0	$(-2^{31}+1) \sim (2^{31}-1)$	N/A
		Refer to description of PE04.				
PE35	PDEF17	PATH#17 definition	Pr	00000000h	000000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE36	PDAT17	PATH#17 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE37	PDEF18	PATH#18 definition	Pr	00000000h00000000h~FFFFFFh		N/A
		Refer to description of PE03.				
PE38	PDAT18	PATH#18 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE39	PDEF19	PATH#19 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE40	PDAT19	PATH#19 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE41	PDEF20	PATH#20 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE42	PDAT20	PATH#20 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE43	PDEF21	PATH#21 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE44	PDAT21	PATH#21 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE45	PDEF22	PATH#22 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE46	PDAT22	PATH#22 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE47	PDEF23	PATH#23 definition	Pr	00000000h	000000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE48	PDAT23	PATH#23 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				

Pr.No Abbr	Abbr	C Function and description	Control	Default	Range	Unit
		i unction and description	mode	value	Kange	Unit
PE49	PDEF24	PATH#24 definition	Pr	00000000h	000000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE50	PDAT24	PATH#24 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE51	PDEF25	PATH#25 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE52	PDAT25	PATH#25 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE53	PDEF26	PATH#26 definition	Pr	00000000h	000000h00000000h~FFFFFFFh	
		Refer to description of PE03.				
PE54	PDAT26	PATH#26 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE55	PDEF27	PATH#27 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE56	PDAT27	PATH#27 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE57	PDEF28	PATH#28 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE58	PDAT28	PATH#28 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE59	PDEF29	PATH#29 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE60	PDAT29	PATH#29 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE61	PDEF30	PATH#30 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE62	PDAT30	PATH#30 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE63	PDEF31	PATH#31 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PE64	PDAT31	PATH#31 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE65	PDEF32	PATH#32 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE66	PDAT32	PATH#32 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE67	PDEF33	PATH#33 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE68	PDAT33	PATH#33 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE69	PDEF34	PATH#34 definition	Pr	00000000h	000000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE70	PDAT34	PATH#34 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE71	PDEF35	PATH#35 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE72	PDAT35	PATH#35 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE73	PDEF36	PATH#36 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE74	PDAT36	PATH#36 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE75	PDEF37	PATH#37 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE76	PDAT37	PATH#37 data	Pr	0	$(-2^{31}+1) \sim (2^{31}-1)$	N/A
		Refer to description of PE04.				
PE77	PDEF38	PATH#38 definition	Pr	00000000h	000000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE78	PDAT38	PATH#38 data	Pr	0	$(-2^{31}+1) \sim (2^{31}-1)$	N/A
		Refer to description of PE04.			()	

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PE79	PDEF39	PATH#39 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PE80	PDAT39	PATH#39 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PE81	PDEF40	PATH#40 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PE82	PDAT40	PATH#40 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PE83	PDEF41	PATH#41 definition Refer to description of PE03.	Pr	00000000h	000000000h~FFFFFFFFh	N/A
PE84	PDAT41	PATH#41 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PE85	PDEF42	PATH#42 definition Refer to description of PE03.	Pr	00000000h	000000000h~FFFFFFFFh	N/A
PE86	PDAT42	PATH#42 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PE87	PDEF43	PATH#43 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PE88	PDAT43	PATH#43 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PE89	PDEF44	PATH#44 definition Refer to description of PE03.	Pr	00000000h	000000000h~FFFFFFFFh	N/A
PE90	PDAT44	PATH#44 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PE91	PDEF45	PATH#45 definition Refer to description of PE03.	Pr	00000000h	000000000h~FFFFFFFFh	N/A
PE92	PDAT45	PATH#45 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PE93	PDEF46	PATH#46 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE94	PDAT46	PATH#46 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE95	PDEF47	PATH#47 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE96	PDAT47	PATH#47 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE97	PDEF48	PATH#48 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PE98	PDAT48	PATH#48 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PE99		Reserved				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PF01	PDEF49	PATH#49 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PF02	PDAT49	PATH#49 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PF03	PDEF50	PATH#50 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PF04	PDAT50	PATH#50 data Refer to description of PE04.	Pr	0	-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PF05	PDEF51	PATH#51 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PF06	PDAT51	PATH#51 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PF07	PDEF52	PATH#52 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PF08	PDAT52	PATH#52 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PF09	PDEF53	PATH#53 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PF10	PDAT53	PATH#53 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PF11	PDEF54	PATH#54 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PF12	PDAT54	PATH#54 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PF13	PDEF55	PATH#55 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A
PF14	PDAT55	PATH#55 data Refer to description of PE04.	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
PF15	PDEF56	PATH#56 definition Refer to description of PE03.	Pr	00000000h	00000000h~FFFFFFFh	N/A

Pr.No	Abbr	Function and description	Control mode	Default value	Range	
PF16	PDAT56	PATH#56 data	Pr	0	$(-2^{31}+1) \sim (2^{31}-1)$	N/A
		Refer to description of PE04.				
PF17	PDEF57	PATH#57 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PF18	PDAT57	PATH#57 data	Pr	0	$(-2^{31}+1) \sim (2^{31}-1)$	N/A
		Refer to description of PE04.				
PF19	PDEF58	PATH#58 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PF20	PDAT58	PATH#58 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PF21	PDEF59	PATH#59 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PF22	PDAT59	PATH#59 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PF23	PDEF60	PATH#60 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PF24	PDAT60	PATH#60 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PF25	PDEF61	PATH#61 definition	Pr	00000000h	00000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PF26	PDAT61	PATH#61 data	Pr	0	$(-2^{31}+1) \sim (2^{31}-1)$	N/A
		Refer to description of PE04.				
PF27	PDEF62	PATH#62 definition	Pr	00000000h	000000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PF28	PDAT62	PATH#62 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PF29	PDEF63	PATH#63 definition	Pr	00000000h	000000000h~FFFFFFFh	N/A
		Refer to description of PE03.				
PF30	PDAT63	PATH#63 data	Pr	0	(-2 ³¹ +1) ~ (2 ³¹ -1)	N/A
		Refer to description of PE04.				
PF31		Reserved				
PF32		Reserved				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PF33	POV1	Speed setting of internal position command 1	Pr	50	1~6000	rpm
PF34	POV2	Speed setting of internal position command 2	Pr	10	1~6000	rpm
PF35	POV3	Speed setting of internal position command 3	Pr	200	1~6000	rpm
PF36	POV4	Speed setting of internal position command 4	Pr	300	1~6000	rpm
PF37	POV5	Speed setting of internal position command 5	Pr	500	1~6000	rpm
PF38	POV6	Speed setting of internal position command 6	Pr	800	1~6000	rpm
PF39	POV7	Speed setting of internal position command 7	Pr	1000	1~6000	rpm
PF40	POV8	Speed setting of internal position command 8	Pr	1200	1~6000	rpm
PF41	POV9	Speed setting of internal position command 9	Pr	1500	1~6000	rpm
PF42	POV10	Speed setting of internal position command 10	Pr	1800	1~6000	rpm
PF43	POV11	Speed setting of internal position command 11	Pr	2000	1~6000	rpm
PF44	POV12	Speed setting of internal position command 12	Pr	2200	1~6000	rpm
PF45	POV13	Speed setting of internal position command 13	Pr	2400	1~6000	rpm
PF46	POV14	Speed setting of internal position command 14	Pr	2700	1~6000	rpm
PF47	POV15	Speed setting of internal position command 15	Pr	3000	1~6000	rpm
PF48	POV16	Speed setting of internal position command 16	Pr	3000	1~6000	rpm
PF49	POA1	Acceleration/deceleration time 1 of internal position command It is to set the acceleration and deceleration time in Pr mode, which is the time required from 0 to the rated speed.	Pr	200	1~65550	ms
PF50	POA2	Acceleration/deceleration time 2 of internal position command Refer to description of PF49.	Pr	200	1~65550	ms
PF51	POA3	Acceleration/deceleration time 3 of internal position command Refer to description of PF49.	Pr	300	1~65550	ms
PF52	POA4	Acceleration/deceleration time 4 of internal position command Refer to description of PF49.	Pr	500	1~65550	ms

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PF53	POV5	Acceleration/deceleration time 5 of internal position	Pr	600	1~65550	ms
		command. Refer to description of PF49.				
PF54	POV6	Acceleration/deceleration time 6 of internal position	Pr	800	1~65550	ms
		command. Refer to description of PF49.				
PF55	POV7	Acceleration/deceleration time 7 of internal position	Pr	900	1~65550	ms
		command. Refer to description of PF49.				
PF56	POV8	Acceleration/deceleration time 8 of internal position	Pr	1000	1~65550	ms
		command. Refer to description of PF49.				
PF57	POV9	Acceleration/deceleration time 9 of internal position	Pr	1200	1~65550	ms
		command. Refer to description of PF49.				
PF58	POV10	Acceleration/deceleration time 10 of internal position	Pr	1400	1~65550	ms
		command. Refer to description of PF49.				
PF59	POV11	Acceleration/deceleration time 11 of internal position	Pr	1600	1~65550	ms
		command. Refer to description of PF49.				
PF60	POV12	Acceleration/deceleration time 12 of internal position	Pr	2000	1~65550	ms
		command. Refer to description of PF49.				
PF61	POV13	Acceleration/deceleration time 13 of internal position	Pr	2500	1~65550	ms
		command. Refer to description of PF49.				
PF62	POV14	Acceleration/deceleration time 14 of internal position	Pr	3000	1~65550	ms
		command. Refer to description of PF49.				
PF63	POV15	Acceleration/deceleration time 15 of internal position	Pr	4000	1~65550	ms
		command. Refer to description of PF49.				
PF64	POV16	Acceleration/deceleration time 16 of internal position	Pr	5000	1~65550	ms
		command. Refer to description of PF49.				
PF65	DLY1	Delay time 1 after position reached	Pr	0	0~32767	ms
		To set the delay time in Pr mode.				
PF66	DLY2	Delay time 2 after position reached	Pr	100	0~32767	ms
		Refer to description of PF65.				
PF67	DLY3	Delay time 3 after position reached	Pr	200	0~32767	ms
		Refer to description of PF65.				
PF68	DLY4	Delay time 4 after position reached	Pr	300	0~32767	ms
		Refer to description of PF65.				
PF69	DLY5	Delay time 5 after position reached	Pr	500	0~32767	ms
		Refer to description of PF65.				

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PF70	DLY6	Delay time 6 after position reached	Pr	600	0~32767	ms
		Refer to description of PF65.				
PF71	DLY7	Delay time 7 after position reached	Pr	800	0~32767	ms
		Refer to description of PF65.				
PF72	DLY8	Delay time 8 after position reached	Pr	1000	0~32767	ms
		Refer to description of PF65.				
PF73	DLY9	Delay time 9 after position reached	Pr	1200	0~32767	ms
		Refer to description of PF65.				
PF74	DLY10	Delay time 10 after position reached	Pr	1500	0~32767	ms
		Refer to description of PF65.				
PF75	DLY11	Delay time 11 after position reached	Pr	2000	0~32767	ms
		Refer to description of PF65.				
PF76	DLY12	Delay time 12 after position reached	Pr	2300	0~32767	ms
		Refer to description of PF65.				
PF77	DLY13	Delay time 13 after position reached	Pr	2500	0~32767	ms
		Refer to description of PF65.				
PF78	DLY14	Delay time 14 after position reached	Pr	3000	0~32767	ms
		Refer to description of PF65.				
PF79	DLY15	Delay time 15 after position reached	Pr	4000	0~32767	ms
		Refer to description of PF65.				
PF80	DLY16	Delay time 16 after position reached	Pr	5000	0~32767	ms
		Refer to description of PF65.				

Pr.No	Abbr		Function and description					ol Default e value		Range	Unit	
PF81	PDEC	Decelerati	on time f	or auto-prote	ction		CoE. Pr.S	000	00000h	0~ F0F0FFFF	N/A h	
		The paran Including:	neter sett	ing is divided	l into 8 dig	gits(hex), which	are D	, C, B, A,	W, Z, Y, ar	ıd X:	
		1.Decelera	ation time	e for auto-pro	tection				_			
		Digit		C	В	A	A W Z Y					
		function	SIP	Reserved		Reser	ved SNL SPL					
				-	0~F	-		J~F	0~F	0~F	0~F	
		STP: the second deceleration time of homing, deceleration time of DI:STOP CTO: the deceleration time when communication timeout or ABS communication alarm occurs.										
		SNL: the SPL: the NL: the PL: the	SNL: the deceleration time when the software negative limit alarm occurs.SPL: the deceleration time when the software positive limit alarm occurs.NL: the deceleration time when the LSN reverse limit alarm occurs.PL: the deceleration time when the LSP positive limit alarm occurs.									
		0~F is use For examp PF58.	ed to inde ble, if X is	x the deceler set to A, the	ation time decelera	e of PF ² tion tim	19∼PF64 e of PL i	s dete	rmined b	y the value	of	
PF82	PRCM	Pr comma	nd trigge	r register			Pr		0	0~1000	N/A	
(■)		Set PF82 which is th	to 0 to s le same a	tart homing. as using DI:C	Set PF82 TRG+PC	2 to 1~6 Sn. You	3 to exe cannot	ecute set P	the speci F82 to 64	∣ ified PR pro I~9999 as t	 ocedure, he value	
		(exceeds DI:STOP.	the valid	range). Writ	te 1000 t	o execi	ute stop	comr	nand wh	ich is the s	ame as	
		When read	ding PF8	2, if the comn	nand is in	comple	te, the d	rive re	ads the o	current com	mand. If	
		the comma	and is co	mpleted, the	drive rea	ds the o	current c	omma	and +100	00. If the co	ommand	
		is complet	ted, DO:I +20000.	NP is on, ai Commands	nd motor triggered	positio by DI a	n is rea re also a	ched, pplica	the drive ble.	e reads the	current	
		Example:	.,				-	•				
		vvrite the p	ositionin	g command 3	o to trigge	er the P	к progra to	im 3.				
		If the value		3, it means r	ans PR#	Comple 3 comm	ie. and has	heen	sent hu	it the motor	has not	
		reached th	e target	position vet		o comin			i sont, bu			
		If the value	e read is	20003, it me	ans PR#3	3 comm	and has	been	sent and	I the motor	reached	
		the target	position.									

Pr.No	Abbr	Function and description	Control mode	Default value	Range	Unit
PF83	EVON	PR number triggered by event rising edge	Pr	0000h	0000h	N/A
					~DDDDh	
		Setting: UZYX				
		It is to set the execute PR number when EVx is ON.				
		X=0: no action when EV1 is ON.				
		X=1~D: execute PR# 51 - 63 when EV1 is ON.				
		Y=0: no action when EV2 is ON.				
		Y=1~D: execute PR# 51 - 63 when EV2 is ON.				
		Z=0: no action when EV3 is ON.				
		Z=1~D: execute PR# 51 - 63 when EV3 is ON.				
		U=0: no action when EV4 is ON.				
		U=1~D: execute PR# 51 - 63 when EV4 is ON.		1		
PF84	EVOF	PR number triggered by falling edge	Pr	0000h	0000h	N/A
					~DDDDh	
		Setting: UZYX				
		It is to set the execute PR number when EVx is OFF.				
		X=0: no action when EV1 is OFF.				
		X=1~D: execute PR# 51 - 63 when EV1 is OFF.				
		Y=0: no action when EV2 is OFF.				
		Y=1~D: execute PR# 51 - 63 when EV2 is OFF.				
		Z=0: no action when EV3 is OFF.				
		Z=1~D: execute PR# 51 - 63 when EV3 is OFF.				
		U=0: no action when EV4 is OFF.				
		U=1~D: execute PR# 51 - 63 when EV4 is OFF.				
			0-5	00006	00006	
PF00	PINEIN	PATH#T - PATH#2 volatile setting		00000	00000	IN/A
(■)		IL Sets by four bits out X:	P1.5		~	
		X=0. PATH#1 data is non-volatile.			001111	
		X = 1: PAT H#1 data is volatile.				
		1 - 0. PAT H#2 data is non-volatile.				
		The others are reserved				
		This parameter allows you to write data to the target				
		continuously through communication				
		continuously through communication.				

Duble	A 1- 1		Control	Default	Damas	11
Pr.NO	ADDr	Function and description	mode	value	Range	Unit
PF86	SWLP	Positive software limit			-2 ³¹ +1	pulse
		In PR mode, if the motor rotates in the forward		2 ³¹ -1	~	
		direction and the position command exceeds PF86,			2 ³¹ -1	
		AL.14 will occur.				
PF87	SWLN	Negative software limit			-2 ³¹ +1	pulse
		In PR mode, if the motor rotates in the reverse	Dr	-2 ³¹ -1	~	
		direction and the position command exceeds PF87,	PI		2 ³¹ -1	
		AL.15 will occur.				
PF88		Reserved				
PF89	BI SF	Backlash compensation option	CoF Pr	0	0	N/A
(*)		0: invalid			~	
		1: forward direction compensation			2	
		2: reverse direction compensation				
PF90	BLSP	Backlash compensation value setting	CoE. Pr	0	-32767	pulse
		(before E-gear)			~	1
					32767	
PF91	BLST	Backlash compensation time constant setting	CoE. Pr	0	0	0.1ms
					~	
					10000	
PF92		Reserved				
~						
PF99						

9.Communication Function

9.1 Communication interface and wiring

This servo drive has EtherCAT industrial Ethernet communication function and universal USB serial communication function, which is convenient to drive the servo system, change parameters and monitor the servo system status. You can select the communication mode and drive device number by the parameters to complete the communication pre-work. The communication function parameters are defined in the PC parameters group. The wiring is described as follows:

EtherCAT

(1) External sketch:

Servo drive 1-axis operation

Be sure to use shielded twisted pair (STP) cable that meets the TIA/EIA-568 5e standard specifications or above.

(2) Wiring diagram

Note 1: The connector for CN3 is an RJ-45 connector.

2: The wiring length is 100m or less in a low noise environment.

USB

(1) External sketch

Use the standard Mini-USB cable, it is recommended to use the USB cable with magnetic ring, which has stronger anti-interference.

9.2 Communication specifications

The communication specifications of SERVO AMP are set as follows when the servo drive is operated by EtherCAT communication.

(1) Mode selection STY (PA01)

Refer to PA01 to select EtherCAT communication for data transmission. Set PA01 to XX20 to enable the EtherCAT communication function.

(2) EtherCAT Sync abnormal detection setting (PC38)

Please refer to PC38 to set the Sync signal detection value for EtherCAT communication, which is Sync Error counts in the communication network of the drive, and the setting range is from 0 to 65535. If the default value is 0, which means that Sync abnormal is not detected.

(3) EtherCAT address selection ESS (PC39)

Refer to PC39 for communication address selection. The setting range is 0 to 65535, and the default value is 0.

- 0: SII (Slave Information Interface)
- 1: Communication address is the same as the drive parameter setting value (1~65535).

Item	Content					
Physical layer	100BASE-TX					
Transmission speed	100Mbps(full duplex)					
Network topology	connect in series					
Communication connector	RJ45 * 2 (CN3 in / CN3 out)					
Communication length	50m between nodes					
Slave station number	max. 65535					
LED indicator	EtherCAT RUN (Green) EtherCAT ERR (RED)					
	EtherCAT L/A IN (Green) EtherCAT L/A OUT (Green)					
FMMU	3 groups					
SyncManager	4 groups					
Application layer protocol	CoE(CANopen over EtherCAT)					
Control mode	Profile Position Mode(PP)					
	Profile Velocity Mode(PV)					
	Profile Torque Mode(PT)					
	Cyclic Synchronous Position Mode(CSP)					
	Cyclic Synchronous Velocity Mode(CSV)					
	Cyclic Synchronous Torque Mode(CST)					
	Homing Mode(HM)					
	Interpolate Position Mode(IP)					
Synchronization mode	DC-Synchronous mode (SYNC0)					
	Asynchronous mode (Free Run)					
Communication object	PDO(Process data object)/SDO(Service data object)					
PDO mapping	TxPDO: 4 groups; RxPDO: 4 groups					

9.3 EtherCAT communication protocol

To communicate with the computer, the EtherCAT communication mode value XX20 must be set in parameter PA01 for each servo drive. After that, the computer will start to scan the current communication mode of the servo drives in the network, and if it meets the conditions, the network card will send the transmission signal frame to each drive to confirm the online status. EtherCAT communication is a serial transmission protocol, communication between drives is using standard network cables. The communication address is set by PC39, and the master station use the communication address to monitor the slave stations.

(a)Technical overview

EtherCAT communication technology, known as Ethernet for Control Automation Technology, which is an industrial Ethernet network technology developed by Beckhoff Automation in Germany. It is currently being promoted by the ETG Association (EtherCAT Technology Group), EtherCAT communication is serial transmission between master and slave stations.

(b)Communication specification

EtherCAT improves on Ethernet framework, by using the master-slave transfer method, multiple slaves can be communicated at the same time. Moreover, it has a specialized hardware architecture to handle the data transmission and equipped with an EtherCAT-based frame to complete the master-slave data transmission. The following is the EtherCAT frame structure.

	Ethernet Header						Et	FCS		
4	8 Bit	48	Bit		16 Bit					32 Bit
Des	tination	So	urce	Eti	herType		Ethernet Data			FCS
		•	Ether	Тур	e 88A4h	1				1
						1	6 Bit		44-1498 Byte	
Des	tination	So	urce	Eth	nerType	He	eader		Datagrams	FCS
l			160	Bit	64 Bit	1	6 Bit	ļ	16-1470 Byte	1
Des	t Src	Туре	IP Heac	ler	UDP H.	He	eader		Datagrams	FCS
			UDP Desti	natior	n Port 88A4h	1				
) Simp) Ether	Simple EtherCAT Communication		11 Bit	1 Bit	4 Bit					
					Connoc	Length	Res.	Туре		

MAX 1514 Byte

The communication frame includes 3 parts: Ethernet header, Ethernet data and FCS. The Ethernet header contains data source, transmission destination, and the EtherCAT communication mode needs to be selected as EtherType. And Ethernet data content has header and datagrams. The datagrams can set the frame delivery method and check if the read/write action is completed.

Ethernet Heade	r	t Data					FCS	
14 Byte	11 Bit 1 4	11 Rit 1 4 Rit 44*-1498 Rute						4 Byte
Ethernet Heade	r Length 0 1	1n E	EtherCAT	Datag	gram	s	Ť	FCS
1 st E	therCAT Datagra	am	2 nd	n st l	Ether	CATI	Data	agram
1 1 1 1	10 Byte		 0-1	 486 B	yte	-2E	syte	
	Datagram He	ader			Data		\sim	/KC
8 Bit 8 Bit	32	Bit	11 Bit	3	1	1	16	Bit
₀ Cmd ₈ Idx	16 Add	ress	48 Len	59R	62 ^C	_{ва} М _{ва}	₃₄ IF	RQ ₇₉
	16 Bit	16 Bit	Ν	/lore	Ether	^ CAT I	Data	agrams
	_ ← Posit	$]$ \leq Position Addressing						
	► Node Addressing							
	<logic< td=""><td>al Ad</td><td>Idres</td><td>sing</td><td></td><td></td></logic<>	al Ad	Idres	sing				

One EtherCAT data frame may contain several datagrams, and the maximum size of an EtherCAT communication frame is 1514 Bytes. The header of datagrams is for the data exchange method selection and the slave address marking, it also reads and writes the EtherCAT internal register's data by determining the slave address.

Datagram header	Data type	Content
Cmd	Byte	EtherCAT transmission command type
ldx	Byte	Frame index number
Address	Byte[4]	Slave address setting
Len	11 bit	Datagram transmission length
R	3 bit	Reserved to 0
С	1 bit	Whether the frame is looped or not
М	1 bit	Whether a datagram coming up next
IRQ	WORD	Interrupt
Data	Byte[n]	Transmission data
WKC	WORD	Confirm read/write status

(c)EtherCAT communication architecture

EtherCAT is built base on the framework of Ethernet, and the communication architecture can be divided into physical layer, data link layer and application layer. The physical layer is mainly used for decoding and encoding, the data link layer defines the EtherCAT operation functions, and the application layer is the top layer of the EtherCAT protocol, which is used as the data exchange medium between the network side and the control side. The EtherCAT communication protocol is integrated with many protocols, such as CANopen, SERCOS, etc. The protocol that integrates EtherCAT with CANopen is the CoE communication protocol.

(d)Operation status

In EtherCAT communication, there is an operation mechanism for the state machine switching program, it defines the state and assigns the tasks that need to be executed. The states include Init State (Initial State), Pre-OP State (Pre-Operational State), Safe-OP State (Safe-Operational State), and OP State (Operational State). The state machine switches the states in following sequence.

The execution sequence follows the block diagram from top to bottom. The state can be switched from bottom to top as required. If the final state is the same as command, it means switching process is completed.

State switching	Content					
INIT	Master perform initial setting for the data link layer register.					
INIT -> PREOP	-Master configures the SyncManager channel for Mailbox communication and					
	initializes the Distributed clock synchronization function.					
	-The master requests a state switching to Pre-Operational State.					
PREOP	It can transmit SDO data.					
PREOP ->	-Master configures SyncManager channels and parameters for PDO.					
SAFEOP	-Set the FMMU channel at the data link layer.					
	-Master requests a state switching to Safe-Operational State.					
SAFEOP	It can transmit SDO data and PDO input(TxPDO).					
SAFEOP -> OP	The master can perform a valid PDO output (RxPDO) and request a state switching					
	to the Operational State.					
OP	It can transmission PDO and SDO data.					

According to the table, it can set the corresponding state to meet the requirements.

(e)PDO data mapping

PDO data mapping is mainly used for cyclic continuous transmission. You can choose different PDO mapping channel according to usage. First, the default PDO transmission channels in ESI file are TxPDO: 1A00h~1A03h, and RxPDO: 1600h~1603h, which are in the index of the object dictionary.

• First group of mapping: for Cyclic Synchronous Position.

RxPDO (1600h)	Controlword (6040h)	Target Position (607Ah)	Target Velocity (60FFh)	Target Torque (6071h)	Max. Torque (6072h)	Mode of Operation (6060h)	Touch Probe Function (60B8h)
TxPDO (1A00h)	Statusword (6041h)	Position Actual Value (6064h)	Torque Actual Value (6077h)	Following Error Actual Value (60F4h)	Mode of Operation Display (6061h)	Touch Probe Status (60B9h)	Touch Probe Value (60BAh)

Third group of mapping: for Cyclic Synchronous

• Second group of mapping: for Cyclic Synchronous Position.

RxPDO	Controlword	Target Position		
(1601h)	(6040h)	(607Ah)		
TxPDO	Statusword	Position Actual Value		
(1A01h)	(6041h)	(6064h)		

Velocity

RxPDO	Controlword	Target Velocity		
(1602h)	(6040h)	(60FFh)		
TxPDO	Statusword	Position Actual Value		
(1A02h)	(6041h)	(6064h)		

• Forth group of mapping: for Cyclic Synchronous Torque

RxPDO	Controlword	Target Torque	
(1603h) (6040h)		(6071h)	
TxPDO (1A03b)	Statusword	Position Actual Value	Torque Actual Value
	(004 11)	(6064h)	(6077h)

Define object 1C12h (Sync Manager PDO Assignment 2) to determine the default channel for RxPDO, and object 1C13h (Sync Manager PDO Assignment 3) to determine the default channel for TxPDO. The default RxPDO/TxPDO of the drive is 1601h/1A01h. Object 1C32h(Sync Manager 2 Synchronization) and object 1C33h(Sync Manager 3 Synchronization) can set the synchronization parameters.

(f) Object descriptions

According to the CiA301 and CiA402 protocols, the object definitions required for CANopen over EtherCAT (CoE) can be divided into two parts, the transmission part (1000h~1FFFh) and the drive part (6000h~6FFFh). In order to complete the control task, you can set the status and send drive commands by writing data to objects.

Index	Sub -index	Name	Date type	Access	Unit	Default value	Min value	Max value	
1000h	0	Device Type	UDINT	RO	-	0x00020192	-	-	
1001h	0	Error Register	USINT	RO	-	-	-	-	
4000	0	Manufacturer Device	STRIN						
10080	0	Name	G	RU	-	-	-	-	
40041	0	Manufacturer Software	STRIN						
TUUAN	0	Version	G	RU	-	-	-	-	
1010h	Store Pa	rameters							
	0	Largest sub-index		DO		4			
	0	supported	USINT	RU	-	4	-	-	
	1	Save all parameters	UDINT	RW	-	0x0000001	0x00000000	0xFFFFFFFF	
	2	Save communication	UDINT	RW	-	0x00000001	0x00000000	0xFFFFFFFF	
	3	Save application	UDINT	RW RW		0x00000001	0x00000000	0xFFFFFFFF	
		parameters			-				
	4	Save manufacturer defined	דואורזו ו		-				
	4	parameters	UDINI			0X0000001	0x00000000		
1011h	Restore [Default Parameters							
	0	Largest sub-index		BO	_	1	_	_	
	0	supported	00111			4	-	-	
	1	Restore all default	UDINT	RW	-	0x00000001	0x00000000	0xFFFFFFFF	
	2	Restore communication	דואורזו ו			0×0000001	0~0000000		
	2	default parameters	UDINI		-	0X0000001	0x00000000		
	3	Restore application default		RW	_	0x0000001	0×00000000		
		parameters						UXFFFFFFF	
	4	Restore manufacturer	UDINT	RW	-	0x0000001	0x00000000	0xFFFFFFFF	

Object lists of 1xxxh

Index	Sub	Nama	Date		11	Default	Min	Мах
	-inde	x Name	type	Access	Unit	value	value	value
1018h	Identity Object							
	0	Number of entries	USINT	RO	-	4	-	-
	1	Vendor ID	UDINT	RO	-	0x05BC	-	-
	2	Product code	UDINT	RO	-	0xxxxx	-	-
	3	Revision number	UDINT	RO	-	-	-	-
	4	Serial number	UDINT	RO	-	0	-	-
10F3h	Diagnosis history							
	0	Number of entries	USINT	RO	-	19	-	-
	1	Maximum messages	USINT	RO	-	14	-	-
	2	Newest message	USINT	RO	-	-	-	-
	3	Newest acknowledged message	USINT	RW	-	0	0	0
	4	Newest message available	UDINT	RO	-	0	-	-
	5	Flags	UINT	RW	-	0x0007	0	0xFFFF
	6	Diagnosis message 1	STRING	RO	-	-	-	-
	7	Diagnosis message 2	STRING	RO	-	-	-	-
	8	Diagnosis message 3	STRING	RO	-	-	-	-
	9	Diagnosis message 4	STRING	RO	-	-	-	-
	10	Diagnosis message 5	STRING	RO	-	-	-	-
	11	Diagnosis message 6	STRING	RO	-	-	-	-
	12	Diagnosis message 7	STRING	RO	-	-	-	-
	13	Diagnosis message 8	STRING	RO	-	-	-	-
	14	Diagnosis message 9	STRING	RO	-	-	-	-
	15	Diagnosis message 10	STRING	RO	-	-	-	-
	16	Diagnosis message 11	STRING	RO	-	-	-	-
	17	Diagnosis message 12	STRING	RO	-	-	-	-
	18	Diagnosis message 13	STRING	RO	-	-	-	-
	19	Diagnosis message 14	STRING	RO	-	-	-	-
RxPDO	data	mapping	1600h~1603h					
--------------	------	---------	-------------					
--------------	------	---------	-------------					

Index	Sub	Nama	Date	A	llmit	Default	Min	Мах
muex	-index	Name	type	ALLESS	Unit	value	value	value
1600h	1st Recei	ve PDO Mapping						
	0	Number of objects in this PDO	USINT	RW	-	8	0	8
	1	Mapping entry 1	UDINT	RW	-	0x60400010	0	0xFFFFFFFF
	2	Mapping entry 2	UDINT	RW	-	0x607A0020	0	0xFFFFFFFF
	3	Mapping entry 3	UDINT	RW	-	0x60FF0020	0	0xFFFFFFFF
	4	Mapping entry 4	UDINT	RW	-	0x60710010	0	0xFFFFFFFF
	5	Mapping entry 5	UDINT	RW	-	0x60720010	0	0xFFFFFFFF
	6	Mapping entry 6	UDINT	RW	-	0x60600008	0	0xFFFFFFFF
	7	Mapping entry 7	UDINT	RW	-	0x0000008	0	0xFFFFFFFF
	8	Mapping entry 8	UDINT	RW	-	0x60B80010	0	0xFFFFFFFF
1601h	2nd Rece	eive PDO Mapping						
	0	Number of objects in this PDO	USINT	RW	-	2	0	8
	1	Mapping entry 1	UDINT	RW	-	0x60400010	0	0xFFFFFFFF
	2	Mapping entry 2	UDINT	RW	-	0x607A0020	0	0xFFFFFFFF
	3	Mapping entry 3	UDINT	RW	-	0	0	0xFFFFFFFF
	4	Mapping entry 4	UDINT	RW	-	0	0	0xFFFFFFFF
	5	Mapping entry 5	UDINT	RW	-	0	0	0xFFFFFFFF
	6	Mapping entry 6	UDINT	RW	-	0	0	0xFFFFFFFF
	7	Mapping entry 7	UDINT	RW	-	0	0	0xFFFFFFFF
	8	Mapping entry 8	UDINT	RW	-	0	0	0xFFFFFFFF

Index	Sub	Nomo	Date	A	llmit	Default	Min	Max
Index	-index	Name	type	Access	Unit	value	value	value
1602h	3rd Rece	ive PDO Mapping		·		·		
	0	Number of objects in this	USINT	RW		2	0	8
		PDO			-			
	1	Mapping entry 1	UDINT	RW	-	0x60400010	0	0xFFFFFFFF
	2	Mapping entry 2	UDINT	RW	-	0x60FF0020	0	0xFFFFFFFF
	3	Mapping entry 3	UDINT	RW	-	0	0	0xFFFFFFFF
	4	Mapping entry 4	UDINT	RW	-	0	0	0xFFFFFFFF
	5	Mapping entry 5	UDINT	RW	-	0	0	0xFFFFFFFF
	6	Mapping entry 6	UDINT	RW	-	0	0	0xFFFFFFFF
	7	Mapping entry 7	UDINT	RW	-	0	0	0xFFFFFFFF
	8	Mapping entry 8	UDINT	RW	-	0	0	0xFFFFFFFF
1603h	4th Rece	ive PDO Mapping						•
	0	Number of objects in this	USINT	RW	_	2	0	8
		PDO						
	1	Mapping entry 1	UDINT	RW	-	0x60400010	0	0xFFFFFFFF
	2	Mapping entry 2	UDINT	RW	-	0x60710010	0	0xFFFFFFFF
	3	Mapping entry 3	UDINT	RW	-	0	0	0xFFFFFFFF
	4	Mapping entry 4	UDINT	RW	-	0	0	0xFFFFFFFF
	5	Mapping entry 5	UDINT	RW	-	0	0	0xFFFFFFFF
	6	Mapping entry 6	UDINT	RW	-	0	0	0xFFFFFFFF
	7	Mapping entry 7	UDINT	RW	-	0	0	0xFFFFFFFF
	8	Mapping entry 8	UDINT	RW	-	0	0	0xFFFFFFFF

TxPDO data mapping 1A00h~1A03h

Index	Sub	Nama	Date	A	llmit	Default	Min	Max
maex	-index	Name	type	Access	Unit	value	value	value
1A00h	1st Trans	mit PDO Mapping						
	0	Number of objects in this PDO	USINT	RW	-	8	0	8
	1	Mapping entry 1	UDINT	RW	-	0x60410010	0	0xFFFFFFFF
	2	Mapping entry 2	UDINT	RW	-	0x60640020	0	0xFFFFFFFF
	3	Mapping entry 3	UDINT	RW	-	0x60770010	0	0xFFFFFFFF
	4	Mapping entry 4	UDINT	RW	-	0x60F40020	0	0xFFFFFFFF
	5	Mapping entry 5	UDINT	RW	-	0x60610008	0	0xFFFFFFFF
	6	Mapping entry 6	UDINT	RW	-	0x60FD0020	0	0xFFFFFFFF
	7	Mapping entry 7	UDINT	RW	-	0x60B90010	0	0xFFFFFFFF
	8	Mapping entry 8	UDINT	RW	-	0x60BA0020	0	0xFFFFFFFF
1A01h	2nd Tran	smit PDO Mapping			_			
	0	Number of objects in this PDO	USINT	RW	-	3	0	8
	1	Mapping entry 1	UDINT	RW	-	0x60410010	0	0xFFFFFFFF
	2	Mapping entry 2	UDINT	RW	-	0x60640020	0	0xFFFFFFFF
	3	Mapping entry 3	UDINT	RW	-	0x60FD0020	0	0xFFFFFFFF
	4	Mapping entry 4	UDINT	RW	-	0	0	0xFFFFFFFF
	5	Mapping entry 5	UDINT	RW	-	0	0	0xFFFFFFFF
	6	Mapping entry 6	UDINT	RW	-	0	0	0xFFFFFFFF
	7	Mapping entry 7	UDINT	RW	-	0	0	0xFFFFFFFF
	8	Mapping entry 8	UDINT	RW	-	0	0	0xFFFFFFFF

Index	Sub	Nomo	Date	A	llmit	Default	Min	Мах
Index	-index	Name	type	Access	Unit	value	value	value
1A02h	3rd Trans	mit PDO Mapping		·		·		·
	0	Number of objects in this	USINT	RW		3	0	8
		PDO			-			
	1	Mapping entry 1	UDINT	RW	-	0x60410010	0	0xFFFFFFFF
	2	Mapping entry 2	UDINT	RW	-	0x60640020	0	0xFFFFFFFF
	3	Mapping entry 3	UDINT	RW	-	0x60FD0020	0	0xFFFFFFFF
	4	Mapping entry 4	UDINT	RW	-	0	0	0xFFFFFFFF
	5	Mapping entry 5	UDINT	RW	-	0	0	0xFFFFFFFF
	6	Mapping entry 6	UDINT	RW	-	0	0	0xFFFFFFFF
	7	Mapping entry 7	UDINT	RW	-	0	0	0xFFFFFFFF
	8	Mapping entry 8	UDINT	RW	-	0	0	0xFFFFFFFF
1A03h	4th Trans	mit PDO Mapping				<u> </u>		
	0	Number of objects in this	USINT	RW		4	0	8
		PDO			-			
	1	Mapping entry 1	UDINT	RW	-	0x60410010	0	0xFFFFFFFF
	2	Mapping entry 2	UDINT	RW	-	0x60770010	0	0xFFFFFFFF
	3	Mapping entry 3	UDINT	RW	-	0x60640020	0	0xFFFFFFFF
	4	Mapping entry 4	UDINT	RW	-	0x60FD0020	0	0xFFFFFFFF
	5	Mapping entry 5	UDINT	RW	-	0	0	0xFFFFFFFF
	6	Mapping entry 6	UDINT	RW	-	0	0	0xFFFFFFFF
	7	Mapping entry 7	UDINT	RW	-	0	0	0xFFFFFFFF
	8	Mapping entry 8	UDINT	RW	-	0	0	0xFFFFFFFF

SyncManager channel parameters setting

Index	Sub	Nomo	Date	A	Unit	Default	Min	Мах
maex	-index	Name	type	Access	Unit	value	value	value
1C00h	Sync Mar	nager Communication Type						
	0	Number of used SyncManager channels	USINT	RO	-	4	-	-
	1	Communication type sync	USINT	RO	-	1	-	-
	2	Communication type sync manager 1	USINT	RO	-	2	-	-
	3	Communication type sync manager 2	USINT	RO	-	3	-	-
	4	Communication type sync	USINT	RO	-	4	-	-
1C12h	Sync Mar	nager PDO Assignment2						
	0	Number of assigned PDOs	USINT	RW	-	1	0	4
	1	Index of assigned RxPDO 1	UINT	RW	-	0x1601	0x1600	0x1603
	2	Index of assigned RxPDO 2	UINT	RW	-	0x0000	0x1600	0x1603
	3	Index of assigned RxPDO 3		RW	-	0x0000	0x1600	0x1603
1012h	4 Syna Mar	Index of assigned RXPDU 4	UINT	RW	-	00000	UX1600	UX1603
		Number of assigned PDOs	USINT	RW	_	1	0	4
	1	Index of assigned TyPDO 1		RW		0v1A01	0v1A00	0v1Δ03
	2				-	0,1701	0x1A00	0x1A03
	2				-	0.0000	0.1400	0.1403
	3	Index of assigned TXPDO 3		RW	-	00000	0x1A00	0x1A03
	4	Index of assigned TXPDO 4	UINT	RW	-	0x0000	0x1A00	0x1A03
1C32h	Sync Mar	nager 2 (process data output) Sync	chronizat	ion				
	0	Number of synchronization parameters	USINT	RO	-	32	-	-
	1	Synchronization type	UINT	RO	-	-	-	-
	2	Cycle time	UDINT	RO	-	-	-	-
	3	Shift time	UDINT	RO	-	0	-	-
	4	Synchronization types supported	UINT	RO	-	0x0017	-	-
	5	Minimum cycle time	UDINT	RO	-	50000	-	-
	6	Calc and copy time	UDINT	RO	-	50000	-	-
	7	Reserved	UDINT	RO	-	0	-	-
	8	Reserved	UINT	RO	-	0	-	-
	9	Delay time	UDINT	RO	-	0	-	-
	10	Sync0 cycle time	UDINT	RO	-	-	-	-
	11	Reserved	UINT	RO	-	0	-	-
	12	SM2 event miss count	UINT	RO	-	-	-	-
	13	Shift time too short	UINT	RO	-	-	-	-
	14	RxPDO toggles failed	UINT	RO	-	-	-	-
	32	Sync error	BOOL	RO	-	-	-	-

Index	Sub	Nama	Date	A	Unit	Default	Min	Max
maex	-index	Name	type	Access	Unit	value	value	value
1C33h	Sync Ma	nager 3 (process data input) Synch	nronizatio	on				
	0	Number of synchronization	USINT	RO	-	32	-	-
	1	Synchronization type	UINT	RO	-	-	-	-
	2	Cycle time	UDINT	RO	-	-	-	-
	3							Sync0
		Shift time	UDINT	RW	_	0	0	event cycle
							-	-
								100000
	4	Synchronization types supported	UINT	RO	-	0x0017	-	-
	5	Minimum cycle time	UDINT	RO	-	0	-	-
	6	Calc and copy time	UDINT	RO	-	0	-	-
	7	Minimum delay time	UDINT	RO	-	0	-	-
	8	Command	UINT	RO	-	0	-	-
	9	Delay time	UDINT	RO	-	0	-	-
	10	Sync0 cycle time	UDINT	RO	-	0	-	-
	11	Cycle time too short	UINT	RO	-	-	-	-
	12	SM2 event miss count	UINT	RO	-	-	-	-
	13	Shift time too short	UINT	RO	-	-	-	-
	14	RxPDO toggles failed	UINT	RO	-	-	-	-
	32	Sync error	BOOL	RO	-	-	-	-

Drive internal parameters setting

Index	Sub	Name	Date	Access	Unit	Default	Min	Max
	-index		type			value	value	value
2000h		Servo Parameters(PA01-PH99)						
to	0	A detailed table is available at the	-	-	-	-	-	-
27FFh		object description						

Object lists of 6xxxh

Index	Sub	Nama	Date	A	Unit	Default	Min	Мах
maex	-index	Name	type	Access	Unit	value	value	value
6007h	0	Abort connection option code	INT	RW	-	0	0	3
603Fh	0	Error Code	UINT	RO	-	-	-	-
6040h	0	Controlword	UINT	RW	-	0	0	0xFFFF
6041h	0	Statusword	UINT	RO	-	-	-	-
605Ah	0	Quick Stop Option Code	INT	RW	-	2	0	7
605Bh	0	Shutdown Option Code	INT	RW	-	0	0	1
605Ch	0	Disable Operation Option Code	INT	RW	-	1	0	1
605Dh	0	Halt Option Code	INT	RW	-	1	0	4
605Eh	0	Fault Reaction Option Code	INT	RW	-	0	0	2
6060h	0	Modes of Operation	SINT	RW	-	0	-128	128
6061h	0	Modes of Operation Display	SINT	RO	-	0	-	-
enech	0	Desition Domand Value		BO	Pos.			
000211	0			RU	unit	-	-	-
6063h	0	Position Actual Internal Value	DINT	RO	Inc	-	-	-
6064h	0	Desition Actual Value		BO	Pos.			
000411	0		DINT	RU NO	unit	-	-	-
6065h	0	Following Error Window			Pos.	5242880	0	10737418
000311	0		ODINT		unit	5242000	0	23
6066h	0	Following Error Time Out	UINT	RW	ms	0	0	65535
6067h	0	Position Window		P\M	Pos.	30	0	10737418
000711	0				unit	50	0	23
6068h	0	Position Window Time	UINT	RW	ms	0	0	65535
6069h	0	Velocity sensor actual value	DINT	RO	-	-	-	-
606Ah	0	Sensor selection code	INT	RO	-	-	-	-
606Bh	0	Velocity Demand Value	DINT	RO	Vel. unit	-	-	-
606Ch	0	Velocity Actual Value	DINT	RO	Vel. unit	-	-	-
606Dh	0	Velocity Window	UINT	RW	Vel. unit	20000	0	65535
606Eh	0	Velocity Window Time	UINT	RW	ms	0	0	65535
606Fh	0	Velocity threshold	UINT	RW	Vel. unit	0	0	65535
6070h	0	Velocity threshold time	UINT	RW	ms	0	0	65535

Index	Sub	Nomo	Date	A	Unit	Default	Min	Max
Index	-index	Name	type	Access	Unit	value	value	value
6071h	0	Target Torque	INT	RW	0.1%	0	-32768	32767
6072h	0	Max. Torque	UINT	RW	0.1%	3000	0	65535
6073h	0	Max current	UINT	RO	0.1%	3000	0	65535
6074h	0	Torque Demand Value	INT	RO	0.1%	-	-	-
6075h	0	Motor rated current	UDINT	RO	mA	-	-	-
6076h	0	Motor Rated Torque	UDINT	RO	mNm, mN	-	-	-
6077h	0	Torque Actual Value	INT	RO	0.1%	-	-	-
6078h	0	Current Actual Value	INT	RO	0.1%	-	-	-
6079h	0	DC link circuit voltage	INT	RO	mV	-	-	-
607Ab	0	Target Position	DINT	RW	Pos.	0	-2147483	21474836
007AN	0				unit	0	648	47
607Bh	Position r	ange limit		_				
	0	Number of entries	USINT	RO	-	2	-	-
	1	Min, position range limit		RW	Pos.	-214748	-2147483	21474836
					unit	3647	648	47
	2	Max position range limit		RW	Pos.	214748	-2147483	21474836
	2				unit	3647	648	47
607Ch	0	Home Offset		RW	Pos.	0	-2147483	21474836
	Ŭ				unit	Ŭ	648	47
	Software	Position Limit						
	0	Number of entries	USINT	RO	-	2	-	-
607Dh	1	Min position limit		RW	Pos.	0	-2147483	21474836
oor Bii	•				unit	0	648	47
	2	Max position limit		RW	Pos.	0	-2147483	21474836
	-				unit	0	648	47
607Eh	0	Polarity	USINT	RW	-	0	0	255
607Fh	0	Max Profile Velocity		RW	Vel.	2147483	0	42949672
007111	Ŭ				unit	647		95
6080h	0	Max Motor speed		RW	Vel.	4294967	0	42949672
	0		ODIN		unit	295	0	95
6081h	0	Profile Velocity		RW	Vel.	0	0	42949672
				1 \ V V	unit	0	0	95
6082h	0	End Velocity	דואורו	R/W	Vel.	Ο	Ο	42949672
000211				1.1.1	unit	U	U	95

Index	Sub	Nama	Date	A	Unit	Default	Min	Max
maex	-index	Name	type	Access	Unit	value	value	value
0000	0	Ductile Acceleration			Acc.	1000000	0	42949672
000311	0			RVV	unit	0	0	95
6004h	0	Drafile Decoloration			Acc.	1000000	0	42949672
6084N	0	Profile Deceleration	UDINT	RW	Unit	0	0	95
COOCH	0	Quick Stan Decoloration			Acc.	4000000	0	42949672
000011	0		UDINT		Unit	000	0	95
6086h	0	Motor profile type	INT	RW	-	0	-32767	32767
6007h	0	Tarqua Slana			0.1%	1000	0	42949672
000711	0				/sec	1000	0	95
6088h	0	Torque profile type	INT	RW	-	0	-32767	32767
608Fh	Position e	encoder resolution						
	0	Number of entries	USINT	RO	-	2	-	-
	4	Frankar in community			line	4	4	42949672
	1	Encoder increments		RU	Inc	I	1	95
	2	Mater revolutions		DO	R	4	4	42949672
	2			RU	(motor)	I	I	95
6091h	Gear Rat	io						
	0	Number of entries	USINT	RO	-	2	-	-
	4					DAGO	0	42949672
	I			RVV	-	PAUO	0	95
		Chaft movel utions					4	42949672
	2	Shalt revolutions	UDINT	RW	-	PAU7	1	95
	Feed con	stant						
	0	Number of entries	USINT	RO	-	2	-	-
6000h	4	Food			Pos.	4	4	42949672
60920	1	reed	UDINT	RW	unit	1	1	95
		Chaft revelutions			R	4	4	42949672
	2	Shalt revolutions		KVV	(shaft)	1	1	95
6098h	0	Homing Method	SINT	RW	-	35	0	37

Index	Sub	Namo	Date	٨٥٥٥٩	Unit	Default	Min	Max
muex	-index	Name	type	Access	Unit	value	value	value
6099h	Homing	Speeds						
	0	Number of entries	USINT	RO	-	2	-	-
	1	Speed during search for switch	UDINT	RW	Vel.	500000	0	42949672 95
	2	Speed during search for zero	UDINT	RW	Vel. Unit	100000	0	42949672 95
609Ah	0	Homing Acceleration	UDINT	RW	Acc. unit	1000000 0	0	42949672 95
60A3h	0	Profile jerk use	USINT	RW	-	1	1	255
	Profile je	rk						
	0	Number of entries	USINT	RO	-	2	-	-
60A4h	1	Speed during search for switch	UDINT	RW	Acc. unit	0	0	42949672 95
	2	Speed during search for zero	UDINT	RW	Acc. unit	0	0	42949672 95
60B0h	0	Position Offset	DINT	RW	Pos. unit	0	-2147483 648	21474836 47
60B1h	0	Velocity Offset	DINT	RW	Vel. Unit	0	-2147483 648	21474836 47
60B2h	0	Torque Offset	INT	RW	0.1%	0	-32768	32767
60B8h	0	Touch Probe Function	UINT	RW	-	0	0	0xFFFF
60B9h	0	Touch Probe Status	UINT	RO	-	-	-	-
60BAh	0	Touch Probe 1 position pos Value	DINT	RO	Pos. unit	-	-	-
60BBh	0	Touch Probe 1 position neg Value	DINT	RO	Pos. unit	-	-	-
60BCh	0	Touch Probe 2 position pos Value	DINT	RO	Pos. unit	-	-	-
60BDh	0	Touch Probe 2 position neg Value	DINT	RO	Pos. unit	-	-	-
60C0h	0	Interpolation sub mode	INT	RW	-	0	-3	0
	Interpola	tion Data Record						
60C1h	0	Number of entries	USINT	RO	-	1	-	-
	1	Interpolation data record	DINT	RW	Pos. unit	0	-2147483 648	21474836 47

Index	Sub	Nama	Date	A	Unit	Default	Min	Max
muex	-index	Name	type	ALLESS	Unit	value	value	value
60C2h	Interpola	tion Time Period						
	0	Highest sub-index supported	USINT	RO	-	2	-	-
	1	Interpolation time period	USINT	RW	-	1	1	250
	2	Interpolation time index	SINT	RW	-	-3	-6	-3
60C4h	Interpola	tion data configuration						
	0	Highest sub-index supported	USINT	RO	-	6	-	-
	1	Maximum buffer size	UDINT	RW	-	0	0	42949672 95
	2	Actual buffer size	UDINT	RW	-	0	0	42949672 95
	3	Buffer organization	USINT	RW	-	0	0	1
	4	Buffer position	UINT	RW	-	0	0	32767
	5	Size of data record	USINT	RO	-	1	1	254
	6	Buffer clear	USINT	RO	-	0	0	1
GOCEN	0	May appelaration	eration UDINT RW		Acc.	4294967	0	42949672
000511	0				unit	295		95
60C6h	0	Max decoloration	דואורזו ו		Acc.	4294967	0	42949672
000011	0			unit	unit	295	0	95
60E0h	0	Positive torque limit value	UDINT	RW	0.1%	5000	0	65535
60E1h	0	Negative torque limit value	UDINT	RW	0.1%	5000	0	65535
	Supported homing method							
	0	Highest sub-index supported	USINT	RO	-	32	-	-
60E3h	1	1st supported homing method	UINT	RO	-	1	0	32767
	~		UINT	RO	-	-	0	32767
	32	32nd supported homing method	UINT	RO	-	37	0	32767
60F2h	0	Position option code	UINT	RW	-	0	0	65535
60E4h	0	Following Error Actual Value		PO	Pos.			
00F411	U			κυ	unit	-	-	-
60EAb	0	Control effort	דואום	RO	Vel.		-2147483	21474836
			ו אוט		Unit	-	648	47
60FCh	0	Position Demand Internal Value	DINT	RO	Inc	-	-	-
60FDh	0	Digital Inputs	UDINT	RO	-	-	-	-

Indox	Sub	Namo	Date	٨٥٥٥٩	Unit	Default	Min	Max	
IIIUEX	-index	Name	type	ALLESS	Omt	value	value	value	
	Digital outputs								
	0	Highest sub-index supported	USINT	RO	-	2	-	-	
60FEh 1	Physical outputs	UDINT	RW	-	0	0	0xFFFFFF		
							FF		
	2	Maak hit				0	0	0xFFFFFF	
	2	Mask Di		RW	-	0	0	FF	
SOEEN	0	Target Velocity	DINT	RW	Vel.	0	-2147483	21474836	
OUFFN	0				Unit	0	648	47	
6502h	0	Supported Drive Modes	UDINT	RO	-	0x03ED	-	-	

(h)Object definitions

Drive operation status

By changing the value of object 6040h (Controlword), you can set and monitor the current object 6041h (Statusword) to know the current action performed by the drive, and then check with current drive status.

- Drive state machine switching flowchart

Description of drive state switching

Transition	Event	Action	
0:Peast	Functional react	Drive boots and starts	
U.Reset		initialization.	
1:Initialization	Drive initialization succeed	Communication is enabled.	
2:Shutdown	Shutdown command	-	
3:Switch on	Switch on command	Turn on power module.	
4:Enable operation	Enable operation command	Servo switches to Servo On.	
5:Disable operation	Disable operation command	Servo switches to Servo Off.	
6:Shutdown	Shutdown command	Turn off power module.	
7: Dischle veltage	EtherCAT state machine returns		
	to Init	-	
8:Shutdown	Shutdown command	Servo switches to Servo Off.	
9:Disable voltage	Shutdown the power module	Servo switches to Servo Off	
	immediately		
10:Disable voltage	EtherCAT state machine returns	_	
	to Init		
11:Quick stop	Quick stop command	Enable emergency stop function	
12:Disable voltage	Quick stop action complete	Servo switches to Servo Off.	
13:Error occurs	Drive detects an error	Perform error handling.	
14:Fault reset	Error occurs	Servo switches to Servo Off.	
15:Fault	Error reset command	Error reset is completed.	
16:Enable operation	Enable operation command	Servo switches to Servo On.	

Object 6040h: Controlword

It controls the operation status and operation mode of the drive, and performs drive operation and error reset by adjusting the value.

Index	Sub -index	Name	Data type	Access	PDO mapping	EEPROM
6040h	0	Controlword	UINT	RW	Yes	No

Controlword internal function description

Switching the drive state by changing the corresponding Bit value.

15~11	10~9	8	7	6~4	3	2	1	0
	Decerved	Lalt	Foult report	Operation mode	Enable	Quick	Enable	Switch
IN/A	N/A Reserved Halt	Fault reset	specific	Operation	Stop	Voltage	on	

Bits of the Controlword						
Command	Fault reset	Enable operation	Quick stop	Enable voltage	Switch on	Transitions
Shutdown	0	Х	1	1	0	2,6,8
Switch on	0	0	1	1	1	3
Switch on +						
enable	0	1	1	1	1	3+4
operation						
Disable	0	×	Y	0	v	7 0 10 12
voltage	0	^	^	0	^	7,9,10,12
Quick stop	0	Х	0	1	Х	7,10,11
Disable	0	0	1	1	1	5
operation	0	0	I	ļ	Į	
Enable	0	1	1	1	1	4 16
operation	0	1	I	I	I	4,10
Fault reset	0 -> 1	Х	Х	Х	Х	15

Drive switch state (Controlword: 6040h)

CoE mode description (Controlword: 6040h)

According to the different operation modes, the corresponding Bit4~6 and Bit8 are different, it can change as required.

Operation mode	Bit4	Bit5	Bit6	Bit8	
Profile position mode	New set-point	Change set Immediately	absolute/relative	Halt	
Profile velocity mode	-	-	-	Halt	
Profile torque mode	-	-	-	Halt	
Cyclic Synchronous				Halt	
Position mode	-	-	-	Tait	
Cyclic Synchronous				Halt	
Position mode	-	-	-	Tan	
Cyclic Synchronous				Halt	
Position mode	-	-	-	Παιι	
Homing mode	Start homing	-	-	Halt	
Interpolation position	Enable			Halt	
mode	interpolation	-	-	Παιι	

Object 6041h: Statusword

It is used to feedback the object 6040h execution results and monitor the current drive operation status/operation mode.

Index	Sub -index	Name	Data type	Access	PDO mapping	EEPROM
6041h	0	Statusword	UINT	RO	Yes	No

Statusword bit definition:

Bit 0	Ready to switch on
Bit 1	Switched on
Bit 2	Operation enabled
Bit 3	Fault
Bit 4	Voltage enabled
Bit 5	Quick stop
Bit 6	Switch on disabled
Bit 7	Warning
Bit 8	Reserved
Bit 9	Remote
Bit 10	Target reached
Bit 11	Internal limit active
Bit 12~13	Operation mode specific
Bit 14	Torque limit active
Bit 15	Reserved

Bit0~3 and Bit5~6 comparison table

Statusword	Status
xxxx xxxx x0xx 0000	Not ready to switch on
xxxx xxxx x1xx 0000	Switch on disabled
xxxx xxxx x01x 0001	Ready to switch on
xxxx xxxx x01x 0011	Switched on
xxxx xxxx x01x 0111	Operation enabled
xxxx xxxx x00x 0111	Quick stop active
xxxx xxxx x0xx 1111	Fault reaction active
xxxx xxxx x0xx 1000	Fault

Bit11 Internal limit active trigger condition:

-Software Position Limit is triggered by target position command.

-External limit signal LSP or LSN is triggered.

The functions of Bit10 and Bit12~13 are varies in different operation modes, and it can be changed as required.

Operation mode	Bit10	Bit12	Bit13
Рр	Target reached	Set-point acknowledge	Following error
Pv	Target reached	Speed	-
Pt	Target reached	-	-
Hm	Target reached	Homing attained	Homing error
lp	Target reached	Ip mode active	-
COD		Operation according to	
65P	-	servo command (Note)	Following error
COV		Operation according to	
0.5 V	-	servo command (Note)	-
COT	Operation according to		
631	-	servo command (Note)	-

Note: The servo commands are operated as follows.

Bit12:0 The servo command is not executed according to Target position/Target velocity/Target torque.

Bit12:1 The servo command is executed according to the value of Target position/Target velocity/Target torque.

Bit14 Torque limit active condition description

Torque limit	0: Torque limit is disabled
active bit	1: Torque limit is enabled

Object 6060h: Modes of operation

The object is used to define the value of the related motion protocol according to CoE communication protocol, and you can enable the current operation mode according to the setting value.

Index	Sub	Name	Data type	Data	PDO	FFPROM
macx	-index	INGING	Bata type	access	mapping	
6060h	0	Modes of operation	SINT	RW	Yes	Yes

Setting value	Mode
1.	Profile position mode
3.	Profile velocity mode
4.	Profile torque mode
6.	Homing mode
7.	Interpolated position mode
8.	Cyclic synchronous position mode
9.	Cyclic synchronous velocity mode
10.	Cyclic synchronous torque mode

The CoE mode corresponds to the value declared by Object 6502h: Supported Drive Modes, and the default value of this drive is 0x3ED, which supports the control mode indicated by the corresponding bit.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6502h	0	Supported Drive Modes	UDINT	RO	No	No

Bit NO.	Mode	Support or not
0.	Profile position mode	Yes
1.	Velocity mode	No
2.	Profile velocity mode	Yes
3.	Profile torque mode	Yes
5.	Homing mode	Yes
6.	Interpolated position mode	Yes
7.	Cyclic synchronous position mode	Yes
8.	Cyclic synchronous velocity mode	Yes
9.	Cyclic synchronous torque mode	Yes

Object 6061h: Modes of operation display

According to the CoE communication protocol, this object displays the currently operation mode.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6061h	0	Modes of operation display	SINT	RO	Yes	No

Value	Mode
1.	Profile position mode
3.	Profile velocity mode
4.	Profile torque mode
6.	Homing mode
7.	Interpolated position mode
8.	Cyclic synchronous position mode
9.	Cyclic synchronous velocity mode
10.	Cyclic synchronous torque mode

Object 603Fh: Error Code

According to the CoE communication protocol, this object displays the current error code. When no error generated, the servo is operated normally and 0000h is displayed, once an error occurs, the error code will be displayed in object 603Fh as follows:

Index	Sub	Name	Data type	Data	PDO	EEPROM
	-index		••	access	mapping	
603Fh	0	Error Code	UINT	RO	Yes	No

FF**h (** stands for planning alarm, its range is 01~90)

If there is an over speed problem in SDC series during operation, error code FF06h will be displayed.

Object 605Ah: Quick Stop Option Code

The motor stops according to the deceleration setting after receiving Quick stop command. Different operation modes have different deceleration options in the CoE communication protocol.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
605Ah	0	Quick Stop Option Code	INT	RW	No	Yes

-Operation Mode PP/PV/HOME/CSP/CSV/IP Setting

Obj605A value	State description
0	Decelerate time is according to drive parameter PF81 (bit28~31), and the state
	returns to Switch on disabled
	Decelerate time is according to the object Profile Deceleration 6084h
1.	(non-HOME mode) and the object Homing Acceleration 609Ah (HOME mode)
	respectively, and the state returns to Switch on disabled
2	Decelerate time is according to the object Quick Stop Deceleration 6085h, and
۷.	the state returns to Switch on disabled
з	Decelerate time is according to the object Max deceleration 60C6h, and the
5.	state returns to Switch on disabled
Λ	Decelerate time is according to the drive parameter PF81 (bit28~31), and the
4.	state returns to Quick stop active.
	Decelerate time is according to the object Profile Deceleration 6084h
5.	(non-HOME mode) and the object Homing Acceleration 609Ah (HOME mode)
	respectively, and the state returns to Quick stop active.
6	Decelerate time is according to the object Quick Stop Deceleration 6085h, and
0.	the state returns to Quick stop active.
7	Decelerate time is according to the object Max deceleration 60C6h, and the
/.	state returns to Quick stop active.

-Operation mode CST/PT setting

Obj605A value	State description
0	Decelerate time is according to the object Torque Slope 6087h, and the state
0.	returns to Switch on disabled.
1	Decelerate time is according to the object Torque Slope 6087h, and the state
I.	returns to Switch on disabled.
2	Decelerate time is according to the object Torque Slope 6087h, and the state
Ζ.	returns to Switch on disabled.
3.	Motor stops when Torque = 0, and the state returns to Switch on disabled.
4.	Motor stops when Torque = 0, and the state returns to Quick stop active.
F	Decelerate time is according to the object Torque Slope 6087h, and the state
5.	returns to Quick stop active
6	Decelerate time is according to the object Torque Slope 6087h, and the state
0.	returns to Quick stop active
7.	Motor stops when Torque = 0, and the state returns to Quick stop active.

Object 605Bh: Shutdown Option Code

After a Shutdown command is received by the drive, the motor stops according to the deceleration setting. Different deceleration methods are available in different operation modes in the CoE communication protocol.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
605Bh	0	Shutdown Option Code	INT	RW	No	Yes

-Operation Mode PP/PV/HOME/CSP/CSV/IP Setting

Obj605B value	State description
0	Decelerate time is according to the drive parameter PF81 (bit28~31), and the
0.	state returns to Ready to switch.
	Decelerate time is according to the object Profile Deceleration 6084h
1.	(non-HOME mode) and the object Homing Acceleration 609Ah (HOME mode)
	respectively, and the state returns to Ready to switch on.

-Operation mode CST/PT setting

Obj605B value	State description				
0	Decelerate time is according to the object Torque Slope 6087h and the state				
0.	returns to Ready to switch on.				
1	Decelerate time is according to the object Torque Slope 6087h and the state				
1.	returns to Ready to switch on				

Object 605Ch: Disable Operation Option Code

The drive receives the disable operation command and stops the motor according to the decelerate setting. Different deceleration methods are available in different operation modes in the CoE communication protocol.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
605Ch	0	Disable Operation Option Code	INT	RW	No	Yes

-Operation Mode PP/PV/HOME/CSP/CSV/IP Setting

Obj605C value	State description				
0	Decelerate time is according to the drive parameter PF81 (bit28~31), and the				
0	state returns to Switched on disabled.				
	Decelerate time is according to the object Profile Deceleration 6084h				
1	(non-HOME mode) and the object Homing Acceleration 609Ah (HOME mode)				
	respectively, and the state returns to Switched on disabled.				

-Operation mode CST/PT setting

Obj605C value	State description				
0	Decelerate time is according to the object Torque Slope 6087h, and the state				
0	returns to Switched on disabled.				
1	Decelerate time is according to the object Torque Slope 6087h, and the state				
I	returns to Switched on disabled.				

Object 605Dh: Halt Option Code

When the Controlword halt bit is set to 1, the motor stops according to the deceleration setting. Different deceleration methods are available in different operation modes in the CoE communication protocol.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
605Dh	0	Halt Option Code	INT	RW	No	Yes

-Operation mode PP/PV/HOME/CSP/CSV/IP Setting

Obj605D value	State description				
1	Decelerate time is according to the object Profile Deceleration 6084h, the state				
I	is Operation enabled.				
2	Decelerate time is according to the object Quick Stop Deceleration 6085h, the				
2	state is Operation enabled.				
2	Decelerate time is according to the object Max deceleration 60C6h, and the				
3	state is Operation enabled.				

-Operation mode CST/PT setting

Obj605D value	State description					
1	Decelerate time is according to the object Torque Slope 6087h, and the state is					
	Operation enabled.					
2	Decelerate time is according to the object Torque Slope 6087h, and the state is					
2	Operation enabled.					
3	Motor stops when Torque = 0, and the state is Operation enabled.					

Object 605Eh: Fault Reaction Option Code

Execute this program when Fault Reaction

(Alarm list: AL.80, AL.81, AL.82, AL.83, AL.84, AL.85, AL.86, AL.87, AL.88, AL.89, AL.90, AL.91)

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
605Eh	0	Reaction Option Code	INT	RW	No	Yes

-Operation Mode PP/PV/IP/HM/CSP/CSV Setting

Obj605E value	State description				
	PA22=0: Enable dynamic braking function, and the state is Fault.				
0	PA22=1: Decelerate time is according to drive parameter PF81 (bit28~31), and				
	the state is Fault.				
	Decelerate time is according to the object Profile Deceleration 6084h				
1	(non-HOME mode) and the object Homing Acceleration 609Ah (HOME mode)				
	setting respectively, and the state is Fault.				
2	Decelerate time is according to the object Quick Stop Deceleration 6085h, and				
2	the state is Fault.				

-Operation mode CST/PT setting

Obj605E value	State description				
	PA22=0: Enable dynamic braking function, the state is Fault.				
0	PA22=1: Decelerate time is according to drive parameter PF81 (bit28~31)				
	setting, and the state is Fault.				
4	Decelerate time is according to the object Torque Slope 6087h setting, and the				
I	state is Fault.				
2	Decelerate time is according to the object Torque Slope 6087h, and the state is				
2	Fault.				

Following error function setting (PP and CSP mode)

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6065h	0	Following Error Window	UDINT	RW	No	Yes

Object 6065h: Following Error Window sets the view scope of following error.

Object 6066h: Following Error Time Out sets the judgment time if the following error exceeds the range. Unit: ms.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6066h	0	Following Error Time Out	UINT	RW	No	Yes

Object 60F4h: Following Error Actual Value is the d-value between object 6062h (Position Demand Value) and object 6064h (Position Actual Value).

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60F4h	0	Following Error Actual Value	DINT	RO	Yes	No

Compare Object 60F4h: Following Error Actual Value with Object 6065h: Following Error Window, if it is greater than the Following Error Window set value, bit13 of the Statusword will be switched to 1, otherwise, the value will be 0.

Target reached Function Setting

Object 6067h: Position Window sets the position reached view range.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6067h	0	Position Window	UDINT	RW	No	Yes

Object 6068h: Position Window Time sets the judgement time in ms when the Position is out of range of Position Window.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6068h	0	Position Window	UINT	RW	No	Yes
		Time				

Compares Object 60F4h: Following Error Actual Value (Note) with Object 6067h, if it is within the Position Window, the value of Statusword bit10 will be switched to 1, otherwise the value will be 0.

Note: Object 60F4h: Following Error Actual Value is the D-value between Object 6062h (Position Demand Value) and Object 6064h (Position Actual Value).

Velocity reached function setting

Object 606Dh: Velocity Window sets the velocity reached view range.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
606Dh	0	Velocity Window Actual Value	UINT	RW	No	Yes

Object 606Eh: Velocity Window Time indicates the minimum time that the actual RPM must be within the Velocity Window range, which is used as the judgment condition of Target reached. Unit: ms.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
606Eh	0	Velocity Window Time	UINT	RW	No	Yes

The sum of object 60FFh (Target Velocity) and object 60B1 (Velocity offset) minus object 606C (Velocity Actual Value), if the value is within the range of Velocity Window and keeps over 606Eh (Velocity Window Time), the value of Statusword bit10 will be switched to 1, otherwise the value will be 0 if it is out of the setting range.

Speed function setting (PV mode)

Object 606Fh: Velocity threshold sets the viewing range of motor speed.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
606Fh	0	Velocity threshold	UINT	RW	No	Yes

Object 6070h: Velocity threshold Time sets the judgement time in ms if the velocity is not in the Velocity threshold range.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6070h	0	Velocity threshold Time	UINT	RW	No	Yes

If Object 606C (Velocity Actual Value) exceeds the value of Velocity threshold, the value of the Statusword bit12 will be 0, otherwise if it is lower than the setting range, the value will be 1.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
606Ch	0	Velocity Actual Value	DINT	RO	Yes	No

The objects for Position

Object 607Ah: Target Position Unit: Pos unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
607Ah	0	Target Position	DINT	RW	Yes	No

Object 6062h: Position Demand Value Unit: Pos unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6062h	0	Position Demand Value	DINT	RO	Yes	No

Object 6063h: Position Actual Internal Value Unit: Increments

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6063h	0	Position Actual Internal Value	DINT	RO	Yes	No

Object 6064h: Current actual position of the motor Unit: Pos unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6064h	0	Position Actual Value	DINT	RO	Yes	No

Object 60FCh: Internal position demand value Unit: Pos unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60FCh	0	Position demand internal value	DINT	RO	Yes	No

The Objects for Velocity

Object 60FF: Target Velocity Command Unit: Vel unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60FFh	0	Target Velocity	DINT	RW	Yes	No

Object 606B: Velocity Demand Value Unit: Vel unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
606Bh	0	Velocity Demand Value	DINT	RO	Yes	No

Object 606C: Velocity Actual Value Unit: Vel unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
606Ch	0	Velocity Actual Value	DINT	RO	Yes	No

Object 607Fh: Maximum profile velocity limit Unit: Vel unit

Index	Sub	Name	Data type	Data	PDO	EEPROM
	-index		••	access	mapping	
607Fh	0	Max Profile Velocity	DINT	RW	Yes	Yes

Object 6080h: Maximum velocity limit for motor operation Unit: Vel unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6080h	0	Max Motor Velocity	UDINT	RW	Yes	Yes

Object 6081h: Profile velocity Unit: Vel unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6081h	0	Profile Velocity	UDINT	RW	Yes	Yes

Object 6083h: Profile acceleration Unit: Acc

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6083h	0	Profile Acceleration	UDINT	RW	Yes	Yes

Object 6084h: Profile Deceleration Unit: Acc unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6084h	0	Profile Deceleration	UDINT	RW	Yes	Yes

Object 6085h: Quick Stop Deceleration Unit: Acc unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6085h	0	Quick Stop Deceleration	UDINT	RW	Yes	Yes

Object 60C5h: Max Acceleration Unit: Acc unit

Index	Sub	Name	Data type	Data	PDO	EEPROM
	-index			access	mapping	
60C5h	0	Max Acceleration	UDINT	RW	Yes	Yes

Object 60C6h: Max Deceleration Unit: Acc unit

Index	Sub	Name	Data type	Data	PDO	EEPROM
	-index	Namo		access	mapping	
60C6h	0	Max Deceleration	UDINT	RW	Yes	Yes

The objects for Torque

Object 6071h: Target Torque Command Unit: 0.1%

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6071h	0	Target Torque	INT	RW	Yes	No

Object 6074h: Torque Demand Value Unit: 0.1%

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6074h	0	Torque Demand Value	INT	RO	Yes	No

Object 6077h: Torque Actual Value Unit: 0.1%.

Index	Sub	Name	Data type	Data	PDO	EEPROM
	-index		51	access	mapping	
6077h	0	Torque Actual Value	INT	RO	Yes	No

Object 6072h: Max Torque Unit: 0.1%

Index	Sub	Name	Data type	Data	PDO	EEPROM
	-index			access	mapping	
6072h	0	Max Torque	UINT	RW	Yes	No

Object 6073h: Max Current Unit: 0.1%

Index	Sub	Name	Data type	Data	PDO	FFPROM
macx	-index	Name	Data type	access	mapping	
6073h	0	Max Current	UINT	RO	No	No

Object 6075h: Motor rated current Unit: mA

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6075h	0	Motor rated current	UDINT	RO	Yes	No

Object 6076h: Motor rated torque Unit: mNm

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6076h	0	Motor rated torque	UDINT	RO	Yes	No

Object 6078h: Current Actual value Unit: 0.1%

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6078h	0	Current Actual value	INT	RO	Yes	No

Object 6079h: DC link circuit voltage Unit: mV

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6079h	0	DC link circuit voltage	UDINT	RO	Yes	No

Object 6087h: Torque Slope Unit: 0.1%/sec

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6087h	0	Torque Slope	UDINT	RW	Yes	Yes

The objects for Control Command Offset

Object 60B0h: Position Offset Unit: Pos unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60B0h	0	Position Offset	DINT	RW	Yes	No

Object 60B1h: Velocity Offset Unit: Vel unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60B1h	0	Velocity Offset	DINT	RW	Yes	No

Object 60B2h: Torque Offset Unit: 0.1%

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60B2h	0	Torque Offset	INT	RW	Yes	No

Object 607Ch: Home Offset Unit: Pos unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
607Ch	0	Home Offset	DINT	RW	No	Yes

The objects for Homing

Object 6098h: Homing method.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6098h	0	Homing method	SINT	RW	Yes	No

Object 6099h: Homing Speeds Unit: Vel unit

Index	Sub	Name	Data type	Data	PDO	EEPROM
	-index			access	mapping	
6099h	0	Homing Speeds	USINT	RO	No	No

-Object 6099h-01: Speed during search for switch Unit: Vel unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6099h	1	Speed during search for switch	UDINT	RW	Yes	Yes

-Object 6099h-02: Speed during search for zero Unit: Vel unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6099h	2	Speed during search for zero	UDINT	RW	Yes	Yes

Object 609Ah: Homing Acceleration Unit: Acc unit

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
609Ah	0	Homing Acceleration	UDINT	RW	Yes	Yes

Object 60E3h: Supported homing method

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60E3h	0	Supported homing method	UINT	RO	No	No

The objects for Touch Probe Function

Object 60B8h: Touch probe Function

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60B8h	0	Touch probe Function	UINT	RW	Yes	No

Object 60B9h: Touch probe Status shows the current access status of both positions.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60B9h	0	Touch probe Status	UINT	RO	Yes	No

Object 60BAh: Touch probe1 position pos Value shows access position.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60BAh	0	Touch probe1 position pos Value	DINT	RO	Yes	No

Object 60BBh: Touch probe1 position neg Value shows access position.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60BBh	0	Touch probe1 position neg Value	DINT	RO	Yes	No

Object 60BCh: Touch probe2 position pos Value shows access position.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60BCh	0	Touch probe2 position pos Value	DINT	RO	Yes	No

Object 60BDh: Touch probe2 position neg Value shows access position.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60BDh	0	Touch probe2 position neg Value	DINT	RO	Yes	No

Object 60FD: Digital inputs

The object is used to assign the DI and trigger the LSP, LSN and HOME signals. INP indicates the status of the position reached, it is as below:

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60FDh	0	Digital inputs	UDINT	RO	Yes	No

INP-ON=bit24 of obj60FD is 1 ORGP-ON=bit2 of obj60FD is 1 LSP-ON=bit1 of obj60FD is 1 LSN-ON=bit0 of obj60FD is 1 INP-OFF=bit24 of obj60FD is 0 ORGP-OFF=bit2 of obj60FD is 0 LSP-OFF=bit1 of obj60FD is 0 LSN-OFF=bit0 of obj60FD is 0

Object 60FE: Digital outputs

The object is used to assign DO and trigger the MBR and DO1~DO3 signal

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60FEh	0	Digital outputs	USINT	RO	No	No

Index: 60FE-01h: Physical outputs sets the DO items to be used

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60FEh	1	Physical outputs	UDINT	RW	Yes	No

Index: 60FE-02h: Bit mask. The controller determines the triggered DO items.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60FEh	2	Bit mask	UDINT	RW	Yes	No

Sub-index 01h: Physical outputs

Bit19	Bit18	Bit17	Bit16	Bit0
DO4 signal	DO3 signal	DO2 signal	DO1 signal	MBR

When setting 1 to the corresponding bit of Sub-index 01h means that the DO is defined.

Sub-index 02h: Bit mask

Bit	Name	Value	Status
0	MDD	0	Disable output
0	WDR	1	Enable output
16	DQ1 aignal	0	Disable output
10	DOT signal	1	Enable output
47		0	Disable output
17	DO2 signal	1	Enable output
18	DO3 signal	0	Disable output
10	Deb signal	1	Enable output
10	DQ4 aignal	0	Disable output
19	DO4 signal	1	Enable output

Object 608F: Position encoder resolution

This object shows the motor resolution per revolution.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
608Fh	0	Position encoder resolution	USINT	RO	No	No

Index: 608F-01h: Encoder increments

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
608Fh	1	Encoder increments	UDINT	RO	No	No

Index: 608F-02h: Motor revolutions

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
608Fh	2	Motor revolutions	UDINT	RO	No	No

Object 6091: Gear Ratio

You can set this object to define the E-gear ratio.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6091h	0	Gear Ratio	USINT	RO	No	No

Index: 6091-01h: The numerator of the E-gear ratio is identical to the parameter PA06.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6091h	1	E-gear ratio numerator	UDINT	RW	Yes	No

Index: 6091-02h: The denominator for E-gear ratios is the same as parameter PA07.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6091h	2	E-gear ratio denominator	UDINT	RW	Yes	No

The E-gear ratio setting is changed by the upper controller writing object 6091-01h and object 6091-02h. To fix the E-gear ratio, you can use the object 1010h (Store Parameters) to write the E-gear ratio into the EEPROM.

Object 1010: Store Parameters

Writing the value 0x65766173 to the object 1010: Store Parameters, it can save the object value to the EEPROM (corresponds to the EEPROM: Yes parts). The value of the object returns to 1 when the operation is completed.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
1010h	0	Store Parameters	USINT	RO	No	No

Index: 1010-01h: Save all parameters (For 1xxxh and 6xxxh objects)

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
1010h	1	Save all parameters	UDINT	RW	No	No

Index: 1010-02h: Save communication (For 1xxxh objects)

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
1010h	2	Save communication	UDINT	RW	No	No

Index: 1010-03h: Save application parameters (For 6xxxh objects)

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
1010b	3	Save application	דאוסנו	R\\/	No	No
101011	0	parameters	OBIN		NO	NO

Index: 1010-04h: Save manufacturer defined parameters (For 2xxxh objects)

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
1010h	4	Save manufacturer defined parameters	UDINT	RW	No	No

Object 1011: Restore Default Parameters

Writing the value 0x64616F6C to this object, it can restore the setting object value to its default value. The object value returns to 1 when the operation is completed.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
1011h	0	Default Parameters	USINT	RO	No	No

Index: 1011-01h: Restore all default (For 1xxxh and 6xxxh objects)

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
1011h	1	Restore all default	UDINT	RW	No	No

Index: 1011-02h: Restore communication default parameters (For 1xxxh objects)

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
1011h	2	Restore communication default parameters	UDINT	RW	No	No

Index: 1011-03h: Restore application default parameters (For 6xxxh objects)

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
1011h	3	Restore application default parameters	UDINT	RW	No	No

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
		Restore				
1011h	4	manufacturer	UDINT	RW	No	No
		default parameters				

Index: 1011-04h: Restore manufacturer default parameters (For 2xxxh objects)

Object 60F2h: Position option code defines positioning basis.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60F2h	0	Position option code	UINT	RW	Yes	Yes

Value 0: Based on Target position (607Ah).

Value 1: Based on Position demand value (6062h).

Value 2: Based on Position actual value (6064h).

Object 10F3h: Diagnosis history indicates the alarm history of the drive.

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
10F3h	0	Number of entries	USINT	RO	No	No
	1	Maximum messages	USINT	RO	No	No
	2	Newest message	USINT	RO	No	No
	3	Newest acknowledged message	USINT	RW	No	No
	4	Newest message available	USINT	RO	No	No
	5	Flags	UINT	RW	No	Yes
	6	Diagnosis message1	STRING	RO	No	No
	7	Diagnosis message2	STRING	RO	No	No
	8	Diagnosis message3	STRING	RO	No	No
	9	Diagnosis message4	STRING	RO	No	No
	10	Diagnosis message5	STRING	RO	No	No
	11	Diagnosis message6	STRING	RO	No	No
	12	Diagnosis message7	STRING	RO	No	No
	13	Diagnosis message8	STRING	RO	No	No
	14	Diagnosis message9	STRING	RO	No	No
-	15	Diagnosis message10	STRING	RO	No	No
	16	Diagnosis message11	STRING	RO	No	No
	17	Diagnosis message12	STRING	RO	No	No
	18	Diagnosis message13	STRING	RO	No	No
	19	Diagnosis message14	STRING	RO	No	No

You can see the alarms that have occurred in the drive by the value of object 10F3 to analyze the problem, and the following lists the alarm history.

There are 6 alarms occurred					
02h	0Bh	-+			
	~				
06h	The 5th alarm past				
07h	The 4th alarm past	1			
08h	The 3rd alarm past				
09h	The 2nd alarm past				
0Ah	The last alarm				
0Bh	The current alarm	┣			
0Ch	0				
0Dh	0				
0Eh	0				
0Fh	0				
10h	0				
11h	0	1			
12h	0				
13h	0				

There are 14 alarms occurred

02h	0Bh]≁
2	~	
06h	The 13th alarm past	
07h	The 12th alarm past	1
08h	The 11th alarm past	
09h	The 10th alarm past	
0Ah	The 9th alarm past	1
0Bh	The 8th alarm past	
0Ch	The 7th alarm past	
0Dh	The 6th alarm past	7
0Eh	The 5th alarm past	
0Fh	The 4th alarm past	
10h	The 3rd alarm past	
11h	The 2nd alarm past	
12h	The last alarm	
13h	The current alarm]—

Object 60E0h: Positive torque limit value

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60E0h	0	Positive torque limit value	UDINT	RW	Yes	Yes

Object 60E1h: Negative torque limit value

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
60E1h	0	Negative torque limit value	UDINT	RW	Yes	Yes

Index	Sub -index	Name	Data type	Data access	PDO mapping	EEPROM
6007h	0	Abort connection		RW	No	Yes
000711	0	option code				
6060h	0	Velocity sensor		PO	Vec	No
000911	0	actual value	DINT	RU	165	
606Ab	0	Sensor selection	INT	RO	Yes	No
OUDAN	0	code				
607Bh	0	Position range limit	USINT	RO	No	No
607Eh	0	Polarity	USINT	RW	No	Yes
6082h	0	End Velocity	UDINT	RW	Yes	Yes
6086h	0	Motor profile type	INT	RW	Yes	Yes
6088h	0	Torque profile type	INT	RW	Yes	Yes
6092h	0	Feed constant	USINT	RO	No	No
60A3h	0	Profile jerk use	USINT	RW	No	Yes
60A4h	0	Profile jerk	INT	RO	No	No
60C4h	0	Interpolation data	USINT	RO	No	Ne
		configuration				INU
60FAh	0	Control effort	DINT	RO	Yes	No

Object list (Some functions are not supported currently)
Index	Object	Date type	Name	Description
2001h	VAR		PA01	PA Group
2002h	VAR		PA02	PA Group
~	VAR		~	PA Group
200Ah	VAR		PA10	PA Group
200Bh	VAR		PA11	PA Group
~	VAR		~	PA Group
2010h	VAR		PA16	PA Group
~	VAR		~	PA Group
2032h	VAR		PA50	PA Group
2101h	VAR		PB01	PB Group
~	VAR		~	PB Group
2132h	VAR		PB50	PB Group
2201h	VAR		PC01	PC Group
~	VAR		~	PC Group
2260h	VAR		PC96	PC Group
2301h	VAR		PD01	PD Group
~	VAR		~	PD Group
2321h	VAR		PD33	PD Group
2401h	VAR		PE01	PE Group
~	VAR	-	~	PE Group
2462h	VAR		PE98	PE Group
2501h	VAR		PF01	PF Group
~	VAR		~	PF Group
255Ah	VAR		PF90	PF Group

Description of the drive internal parameters:

(i)Synchronization mechanism

This drive supports two synchronous modes: DC Synchronous mode and Free Run mode. According to the DC section in the ESI file, it includes mode selection and related cycle time settings.

- DC Synchronous mode

In order to achieve consistent system time between the master and slave stations, it is necessary to calculate the offset and delay time between the slave stations. The master writes the time into the corresponding slave register after the calculation, and corrects the time of some individual slaves to align the slaves cycle time.

-Free run mode

The master and slave stations run asynchronously. Each station has an individual clock to calculate time. The command and feedback transmissions between the master and slave are based on a sequential order instead of a precise time synchronization.

10.CANopen Mode

10.1 Profile Position Mode

In profile position control mode, the drive has trajectory planning function, and you need input the target position, profile velocity, profile acceleration and deceleration for the PTP operation during the process.

10.1.1 Operation steps

1.Set the object (Mode of operations: 6060h) to 0x01 to set the mode as Profile Position Mode.

2.Set the object (Target position: 607Ah) to the target position value in pulse and plan the path.

3.Set the object (Profile velocity: 6081h) to the profile velocity value, unit: Pulse / s.

4.Set the object (Profile acceleration: 6083h) and the object (Profile deceleration: 6084h) for the acceleration/deceleration value (millisecond from 0 rpm to 3000 rpm) in Pulse / s^2.

5.Set the object (Controlword: 6040h) by using the value $0x06 \rightarrow 0x07 \rightarrow 0x0F$ to make the control system in Servo On state, when the value is switching from $0x0F \rightarrow 0x1F$, it will triggered the positioning control.

6.You can define the allowed positive or negative error of reaching target position by setting the object (Position window: 6067h), which is to confirm whether the target position is reached or not. In addition, the object (Position window time: 6068h) is used to set how long (ms) it stays within the error range and the Target Reached can be determined.

7.Object (Following error window: 6065h) sets position command error allowable value. The object (Following error window time: 6068h) can be used to set how long (ms) it stays within the error range and confirm whether it is positioned in a relative position.

10.1.2 Related objects setting

Description	of Controlword(Bit4~6)

Bit	Name	Value	Description
		0	No target position set
4.	New set-point	1	Set target position
			The new command is
	Change set immediately	0	acknowledged and executed
		0	after the current command is
			complete.
5.			The servo interrupts the current
			command immediately and
		1	executes the new command
			once receiving the new triggered
			command.
6	Abaaluta/ralativa	0	Absolute position
б.	Absolute/relative	1	Relative position

Description of Statusword

Bit	Name	Value	Description
10.	Target reached	0	Target position is not reached
		1	Target position is reached
13.	Following error	0	The value of Object 60F4 is
			within the setting range.
		1	The value of Object 60F4 is out
			of the setting range.

10.1.3 List of related objects

Index	Sub -index	Name	Date type	Access	Unit	Default value	Min value	Max value
6040h	0	Controlword	UINT	RW	-	0	0	0xFFFF
6041h	0	Statusword	UINT	RO	-	-	-	-
6060h	0	Modes of Operation	SINT	RW	-	0	-128	128
6061h	0	Modes of Operation Display	SINT	RO	-	0	-	-
6062h	0	Position Demand Value	DINT	RO	Pos. unit	-	-	-
6064h	0	Position Actual Value	DINT	RO	Pos. unit	-	-	-
6065h	0	Following Error Window	UDINT	RW	Pos. unit	524288 0	0	10737418 23
6066h	0	Following Error Time Out	UINT	RW	ms	0	0	65535
6067h	0	Position Window	UDINT	RW	Pos. unit	30	0	10737418 23
6068h	0	Position Window Time	UINT	RW	ms	0	0	65535
`606Ch	0	Velocity Actual Value	DINT	RO	Vel. unit	-	-	-
6072h	0	Max. Torque	UINT	RW	0.1%	Motor max. torque	0	65535
607Ah	0	Target Position	DINT	RW	Pos. unit	0	-2147483 648	21474836 47
	Software	e position limit						
	0	Number of entries	USINT	RO	-	2	-	-
607Dh	1	Min. position limit	DINT	RW	Pos. unit	0	-2147483 648	21474836 47
	2	Max. position limit	DINT	RW	Pos. unit	0	-2147483 648	21474836 47
6081h	0	Profile Velocity	UDINT	RW	Vel. unit	0	0	42949672 95
6083h	0	Profile Acceleration	UDINT	RW	Acc. unit	100000 00	0	42949672 95
6084h	0	Profile Deceleration	UDINT	RW	Acc. Unit	100000 00	0	42949672 95
60F4h	0	Following Error Actual Value	DINT	RO	Pos. unit	-	-	-
60FCh	0	Position Demand Internal Value	DINT	RO	Inc	-	-	-

10.2 Interpolation Position Mode

By sending commands to the drive from the upper controller, each command needs to contain an interpolation data to calculate the next position value. During each interpolation cycle, the drive calculates the required position value by the interpolation position.

10.2.1 Operation steps

1.Set the object (Mode of operations: 6060h) to 0x07 to set the mode as Interpolation Position Mode

2. The object (Interpolation sub mode select: 60C0h) default value is 0, which is line interpolation mode.

3. The object (Interpolation time period: 60C2h) sets the interpolation cycle value, which is the same as the synchronization signal SYNC0 cycle.

-Object 60C2h Sub-1 is interpolation cycle time, its range is from 1 to 250.

-Object 60C2h Sub-2 is Interpolation time index, its default value is -3 (Interpolation time unit 10^-3 seconds).

10.2.2 Related objects setting

Bit	Name	Value	Description
4.		0	Disable interpolation
	Enable ID made	U	mode Enable interpolatio mode
	Enable IP mode	1	Enable interpolation
		I	mode
8.	Halt	0	Execute motion
		0	command
		1	Stop motion axis

Interpolation mode setting(Controlword: 6040h)

Interpolation mode setting(Statusword: 6041h)

Bit	Name	Value	Description
10.	Target reached	0	Target position is not reached
	Target reached	1	Target position is reached
12.	IP mode active	0	Interpolation mode is
		U	disabled
		1	Interpolation mode is
			enabled

10.2.3 List of related objects

Index	Sub	Name	Date	Access	Unit	Default	Min	Max
	-index		туре			value	value	
6040h	0	Controlword	UINT	RW	-	0	0	0xFFFF
6041h	0	Statusword	UINT	RO	-	-	-	-
6060h	0	Modes of Operation	SINT	RW	-	0	-128	128
6061h	0	Modes of Operation Display	SINT	RO	-	0	-	-
60C0h	0	Interpolation sub mode	INT	RW	-	0	-3	0
	Interpola	tion Data Record						
60C1h	0	Number of entries	USINT	RO	-	1	-	-
000 11	1	Interpolation data record			Pos.	0	-2147483	21474836
					unit	0	648	47
	Interpola	tion Time Period						
60026	0	Highest sub-index supported	USINT	RO	-	2	-	-
000211	1	Interpolation time period	USINT	RW	-	1	1	250
	2	Interpolation time index	SINT	RW	-	-3	-6	-3
	Interpola	tion data configuration						
	0	Highest sub-index supported	USINT	RO	-	6	-	-
	1	Maximum huffar siza				0	0	42949672
	I		UDINT		-	0	0	95
60C4b	2	Actual buffor size				0	0	42949672
000411	2	Actual buller size	UDINT		-	0	0	95
	3	Buffer organization	USINT	RW	-	0	0	1
	4	Buffer position	UINT	RW	-	0	0	32767
	5	Size of data record	USINT	RO	-	1	1	254
	6	Buffer clear	USINT	RO	-	0	0	1

10.3 Cyclic Synchronous Position Mode

The system has trajectory planning function in this mode. You only need to input the target position, and the position command will be delivered to the drive in a cyclic synchronous way.

10.3.1 Operation steps

1.Set the object (Mode of operations: 6060h) to 0x08 to set the operation mode as Cyclic Synchronous Position Mode and write the target position to the object (Target position: 607Ah) in pulse.

2.Set the object (Controlword: 6040h) by using the value 0x06 -> 0x07 -> 0x0F to make the system in Servo On state and the motor starts to run.

10.3.2 List of related objects

Index	Sub	Nomo	Date	A	llmit	Default	Min	Мах
muex	-index	Name	type	ALCESS	Unit	value	value	value
6040h	0	Controlword	UINT	RW	-	0	0	0xFFFF
6041h	0	Statusword	UINT	RO	-	-	-	-
6060h	0	Modes of Operation	SINT	RW	-	0	-128	128
6061h	0	Modes of Operation Display	SINT	RO	-	0	-	-
6074h	0	Tarret Desition			Pos.	0	-2147483	21474836
607 AN	0	Target Position		RVV	unit	0	648	47
	Software	Position Limit						
	0	Number of entries	USINT	RO	-	2	-	-
607Dh	1	Min position limit			Pos.	0	-2147483	21474836
007.011	I				unit	0	648	47
	2	Max position limit			Pos.	0	-2147483	21474836
	2	wax. position inflic	DINT		unit	0	648	47
6093h	0	Profile Acceleration	דואורזו ו		Acc.	10000	0	42949672
000311	0		UDINT		unit	000	0	95
6091h	0	Profile Decoloration	דואורחו ו		Acc.	100000	0	42949672
000411	0		UDINT		Unit	00	0	95
6085h	0	Quick Stop Deceleration	דאוחו ו	D\\/	Acc.	400000	0	42949672
000511	0		UDINT		Unit	0000	0	95
CODON	0	Position Offect			Pos.	0	-2147483	21474836
000011	0	FUSILION ONSEL	DINT		unit	0	648	47
60P1h	0	Valacity Officat			Vel.	0	-2147483	21474836
	0				Unit	0	648	47
60B2h	0	Torque Offset	INT	RW	0.1%	0	-32768	32767

10.4 Homing Mode

In this mode, the drive can perform homing, and the homing speed and homing acceleration /deceleration can be set. And the drive plans the path.

10.4.1 Operation steps

1.Set the object (Mode of operations: 6060h) to 0x06 to set the operation mode as Homing Mode.

2.Set the object (Homing speeds: 6099h Sub-1) for the speed during searching for the home switch, and set the object (Homing speeds: 6099h Sub-2) for the speed during searching for the zero point.

3.Set the object (Homing acceleration: 609Ah) for the homing acceleration (unit: Pulse / s^2).

4.Select the homing method by setting the object (Homing method: 6098h) within the range of 1 to 37, and the default value is 35.

5.Set the object (Controlword: 6040h) by using the value $0x06 \rightarrow 0x07 \rightarrow 0x0F$ to make the control system in Servo On state. When the object (Controlword: 6040h) is switched from 0x0F to 0x1F, it starts to search the home switch and perform homing.

10.4.2 Homing objects setting

Mode setting	(Controlword: 6040h)
--------------	----------------------

Bit	Name	Value	Description
4.	Homing operation start	0	Homing mode is disabled
	Homing operation start	1	Homing mode is enabled
8.	Holt	0	Execute motion command
	nail	1	Stop motion axis

Homing setting (Statusword: 6041h)

Bit	Name	Value	Description
10.	Torget reached	0	The origin is not reached
	Target reached	1	The origin is reached
12.	Homing attained	0	Homing is not completed
		1	Homing is completed
13.	Homing error	0	No homing error
		1	Homing error occurs

Homing status

Bit 10	Bit 12	Bit 13	Definition
0	0	0	Homing in process
1	0	0	Homing suspended or not yet started
0	1	0	Homing completed but not reached target position
1	1	0	Homing completed.
0	0	1	Homing error occurs but still running
1	0	1	Homing error occurs and stopped.

10.4.3 List of related objects

Index	Sub	Name	Date	Access	Unit	Default	Min	Max
	-index		туре			value	value	value
6040h	0	Controlword	UINT	RW	-	0	0	0xFFFF
6041h	0	Statusword	UINT	RO	-	-	-	-
6060h	0	Modes of Operation	SINT	RW	-	0	-128	128
6061h	0	Modes of Operation Display	SINT	RO	-	0	-	-
0070h	0				Pos.	0	-2147483	21474836
607Cn 0	Home Offset	DINT	RVV	unit	0	648	47	
6098h	0	Homing Method	SINT	RW	-	35	0	37
Quick Stop Deceleration								
	0	Number of entries	USINT	RO	-	2	-	-
6099h 1	4	1 Speed during search for switch	UDINT	RW	Vel.	500000	0	42949672
	1							95
2				Vel.	400000	_	42949672	
	2	peed during search for zero		RVV	Unit	100000	0	95
COO A 1-	0	0 Homing Acceleration			Acc.	100000	•	42949672
609Ah 0	U			KVV	unit	00	U	95

10.4.4 Homing method: 6098h

Homing method	Path description
Method 1	After reaching the reverse limit, rotate forwardly to search the Z-phase for
	homing.

Homing method	Path description
Method 2	After reaching the positive limit switch, rotate reversely to search for the Z-phase
	for homing.

Homing method	Path description
Method 3	Trigger ORGP signal: ON -> OFF during forward rotation and search Z-phase for
	homing.
Method 4	Trigger ORGP signal: OFF -> ON during forward rotation and search Z-phase for
	homing.

Homing method	Path description
Method 5	Trigger ORGP signal: ON -> OFF during reverse rotation and search Z-phase for
	homing.
Method 6	Trigger ORGP signal: OFF -> ON during forward rotation and search Z-phase for
	homing.

Homing method	Path description
Method 7	Trigger ORGP signal: ON -> OFF during forward rotation and search Z-phase for
	homing.
Method 8	Trigger ORGP signal: OFF -> ON during forward rotation and search Z-phase for
	homing.
Method 9	Trigger ORGP signal: ON -> OFF-> ON during forward rotation and search
	Z-phase for homing.
Method 10	Trigger ORGP signal: ON -> OFF during forward rotation and search Z-phase for
	homing.

Homing method	Path description
Method 11	Trigger ORGP signal: ON -> OFF during reverse rotation and search Z-phase for
	homing.
Method 12	Trigger ORGP signal: OFF -> ON during reverse rotation and search Z-phase for
	homing.
Method 13	Trigger ORGP signal: ON -> OFF-> ON during reverse rotation and searching
	Z-phase for homing.
Method 14	Trigger ORGP signal: ON -> OFF during reverse rotation and search Z-phase for
	homing.

Homing method	Path description
Method 17	Trigger LSN signal: ON -> OFF during reverse rotation and not search Z-phase
	for homing.

Homing method	Path description
Method 18	Trigger LSP signal: ON -> OFF during forward rotation and not search Z-phase
	for homing.

Homing method	Path description		
Method 19	Trigger ORGP signal: ON -> OFF during forward rotation and not search Z-phase		
	for homing.		
Method 20	Trigger ORGP signal: ON -> OFF during forward rotation and not search Z-phase		
	for homing.		

Homing method	Path description
Method 21	Trigger ORGP signal: ON -> OFF during forward rotation and not search Z-phase
	for homing.
Method 22	Trigger ORGP signal: ON -> OFF during reverse rotation and not search Z-phase
	for homing.

Homing method	Path description
Mathad 22	Trigger ORGP signal: ON -> OFF during forward rotation and not search Z-phase
Method 23	for homing.
Method 26	Trigger ORGP signal: ON -> OFF during forward rotation and not search Z-phase
	for homing.

Homing method	Path description
Method 27	Trigger ORGP signal: ON -> OFF during reverse rotation and not search Z-phase
	for homing.
Method 30	Trigger ORGP signal: ON -> OFF during reverse rotation and not search Z-phase
	for homing.

Homing method	Path description	
Method 33	Start homing reversely to reach Z phase for homing	
Method 34	Start homing forwardly to reach Z phase for homing	

Homing method	Path description	
Method 35	Use the current motor position as the origin.	
Method 37	Use the current motor position as the origin.	

10.5 Profile Velocity Mode

Set the target speed and plan the acceleration/deceleration path to reach the target speed.

10.5.1 Operation steps

1.Set the object (Mode of operations: 6060h) to 0x03 to set the operation mode as Profile Velocity Mode.

2.Set the object (Controlword: 6040h) by using the value 0x06 -> 0x07 -> 0x0F to make the drive in Servo On state.

3.Set Object(Profile acceleration: 6083h) and object(Profile deceleration: 6084h) to plan the acceleration/deceleration velocity. (Unit Pulse / s^2)

4.Set Object(Max acceleration: 60C5h) and Object(Max deceleration: 60C6h) to plan the maximum acceleration and deceleration velocity. (Unit Pulse / s^2)

5.Set the target velocity object (Target velocity: 60FFh) in Pulse / s. The motor runs to the target velocity according to the setting value.

10.5.2 Statusword function description

Name	Value	Description
Torget reached	0	Target speed not yet reached.
larger reached	1	Target speed reached.
Speed	0	Speed is not 0
Speed	1	Speed is 0

List of related objects

Index	Sub -index	Name	Date type	Access	Unit	Default value	Min value	Max value		
6040h	0	Controlword	UINT	RW	-	0	0	0xFFFF		
6041h	0	Statusword	UINT	RO	-	-	-	-		
6060h	0	Modes of Operation	SINT	RW	-	0	-128	128		
6061h	0	Modes of Operation Display	SINT	RO	-	0	-	-		
EDERA	0	Valacity Domand Value	דואוס	PO	Vel.					
000011	0		DINT	RU	unit	-	-	-		
EDECH	0	Velocity Actual Value	דואוס	PO	Vel.					
000001	0			ŇŎ	unit	_	-	-		
606Dh	0	0 Velocity Window		RW	Vel.	20000	0	65535		
000011	0		UNI		unit					
606Eh	0	Velocity Window Time	UINT	RW	ms	0	0	65535		
607Eb		Max Profile Velocity		D\\/	Vel.	214748	0	42949672		
007111	0		ODINT	1	unit	3647	0	95		
6081h	0	Profile Velocity		R\//	Vel.	0	0	42949672		
000111	0		ODINT	1	unit	0		95		
6083h	0	Profile Acceleration		R\//	Acc.	100000	0	42949672		
000011	0		ODINT	1	unit	00	0	95		
6084h	0	Profile Deceleration		D\\/	Acc.	100000	0	42949672		
000411	0		ODINT	1.1.1	Unit	00	0	95		
6085h	0	Quiek Step Desclaration		D\\/	Acc.	400000	0	42949672		
000011	0					1	Unit	0000	0	95
60EEb	0	Target Velocity	דואום	B\\/	Vel.	0	-2147483	21474836		
				1.7.6	Unit		648	47		

10.6 Cyclic Synchronous Velocity Mode

The system has trajectory planning function in this mode. You only need to input the target speed, and the speed command will be delivered to the drive in a cyclic synchronous way.

10.6.1 Operation steps

1.Set the object (Mode of operations: 6060h) to 0x09 to set the operation mode as Cyclic Synchronous Velocity Mode and write the target velocity to the object (Target position: 60FFh) in Pulse / s.

2.Set the object (Controlword: 6040h) by using the value 0x06 -> 0x07 -> 0x0F to make the control system in Servo On state and the motor starts to run.

List of related objects

Index	Sub	Name		Access	Unit	Default	Min	Мах
Шабх	-index		type	/ 100000	•	value	value	value
6040h	0	Controlword	UINT	RW	-	0	0	0xFFFF
6041h	0	Statusword	UINT	RO	-	-	-	-
6060h	0	Modes of Operation	SINT	RW	-	0	-128	128
6061h	0	Modes of Operation Display	SINT	RO	-	0	-	-
606Rh	0	Velocity Demand Value		RO	Vel.	_	_	
0000011	0				unit	_	-	_
606Ch	0	Velocity Actual Value		RO	Vel.	_	_	_
0000011	0				unit	_	-	_
606Dh	0	Velocity Window			Vel.	20000	0	65535
000011			UNI	1	unit	20000	0	00000
606Eh	0	Velocity Window Time	UINT	RW	ms	0	0	65535
6093h	0	Profile Acceleration			Acc.	100000	0	42949672
000311	0	FIOILIE ACCEleration	ODIN	1.1.1	unit	00	0	95
6084h	0	Profile Deceleration	UDINT		Acc.	100000	0	42949672
000411	0			1.1.1	Unit	00	0	95
6085h	0	Quick Stop Deceleration			Acc.	400000	0	42949672
000311	0		ODINT	1.1.1	Unit	0000	0	95
60 P 1h	0	Valacity Offect			Vel.	0	-2147483	21474836
000 111			DINT		Unit	0	648	47
60B2h	0	Torque Offset	INT	RW	0.1%	0	-32768	32767
BOEEN	0		DINT		Vel.	0	-2147483	21474836
OUFFN	U	larget Velocity		Γ.VV	Unit	U	648	47

10.7 Profile Torque Mode

This mode is to perform torque mode by planning the target torque and setting the motor rotation speed.

10.7.1 Operation steps

1.Set the object (Mode of operations: 6060h) to 0x04 to set the operation mode as Profile Torque Mode.

2.Set the object (Torque slope: 6087h) to adjust the torque slope (unit: 0.1%).

3.Set the object (Controlword: 6040h) by using the value 0x06 -> 0x07 -> 0x0F to make the drive in Servo On state and the motor starts to run. You can set the target torque to the object (Target torque: 6071h) and set the maximum speed limit to the object (Max motor speed: 6080h).

Index	Sub	Name	Name)ate	Unit	Default	Min	Мах
macx	-index	Nume	type	A00033	onic	value	value	value
6040h	0	Controlword	UINT	RW	-	0	0	0xFFFF
6041h	0	Statusword	UINT	RO	-	-	-	-
6060h	0	Modes of Operation	SINT	RW	-	0	-128	128
6061h	0	Modes of Operation Display	SINT	RO	-	0	-	-
6071h	0	Target Torque	INT	RW	0.1%	0	-32768	32767
						Motor		
6072h	0	Max. Torque	UINT	RW	0.1%	max.	0	65535
						torque		
6074h	0	Torque Demand Value	INT	RO	0.1%	-	-	-
6075h	0	Motor rated current	UDINT	RO	mA	-	-	-
6077h	0	Torque Actual Value	INT	RO	0.1%	-	-	-
6078h	0	Current Actual Value	INT	RO	0.1%	-	-	-
6095h	0	Quick Stop Decoloration			Acc.	400000	0	42949672
000511	0	QUICK Stop Deceleration	UDINT	RVV	Unit	0000	0	95
6007h	0	0 Torque Slope			0.1%	1000	0	42949672
000711	U				/sec	1000	0	95

List of related objects

10.8 Cyclic Synchronous Torque Mode

The system has trajectory planning function in this mode. You only need to input the target torque, and the control command will be delivered to the drive in a cyclic synchronous way.

10.8.1 Operation steps

1.Set the object (Mode of operations: 6060h) to 0x10 to set the operation mode as Cyclic Synchronous Torque Mode. Set the target torque to the object (Target torque: 6071h) and set the maximum speed limit to the object (Max motor speed: 6080h).

2.Set the object (Controlword: 6040h) by using the value 0x06 -> 0x07 -> 0x0F to make the control system in Servo On state and the motor starts to run.

List of related objects

Index	Sub -index	Name	Date type	Access	Unit	Default value	Min value	Max value
6040h	0	Controlword	UINT	RW	-	0	0	0xFFFF
6041h	0	Statusword	UINT	RO	-	-	-	-
6060h	0	Modes of Operation	SINT	RW	-	0	-128	128
6061h	0	Modes of Operation Display	SINT	RO	-	0	-	-
6064h	0	Position Actual Value		RO	Pos.	_	_	_
000-11	0				unit	_	-	_
606Ch	0	Velocity Actual Value	דואוס	RO	Vel.	_	_	_
0000011			DINT		unit	-	-	_
6071h	0	Target Torque	INT	RW	0.1%	0	-32768	32767
						Motor		
6072h	0	Max. Torque	UINT	RW	0.1%	max.	0	65535
						torque		
6077h	0	Torque Actual Value	INT	RO	0.1%	-	-	-
6097h	0	0 Torque Slope	דאוסו ו		0.1%/s	1000	0	42949672
6087h	U		ואונסט		ec	1000	U	95
60B2h	0	Torque Offset	INT	RW	0.1%	0	-32768	32767

10.9 Touch Probe Function

You can use external latch input signal or encoder Z phase to record the current position actual value in this function.

10.9.1 Operation steps

1.By setting the value of Touch probe function, you can read the touch probe status to confirm the position latch status. If it is executed correctly, the latch position will be write into the following objects respectively: (Touch probe pos1 pos value: 60BAh), (Touch probe pos1 neg value: 60BBh), (Touch probe pos2 pos value: 60BCh), (Touch probe pos2 neg value: 60BDh). The trigger signal source is external latch input command or encoder Z phase signal. Setting DI code 0x29 or 0x2A to enable external triggers.

Index	Sub	Name	Date	Access Unit	Default	Min	Мах	
IIIUEA	-index	Name	type	ALLESS	onit	value	value	value
6040h	0	Controlword	UINT	RW	-	0	0	0xFFFF
6041h	0	Statusword	UINT	RO	-	-	-	-
6060h	0	Modes of Operation	SINT	RW	-	0	-128	128
6061h	0	Modes of Operation Display	SINT	RO	-	0	-	-
60B8h	0	Touch Probe Function	UINT	RW	-	0	0	0xFFFF
60B9h	0	Touch Probe Status	UINT	RO	-	-	-	-
CODAL	0	Touch Probe 1 position pos		BO	Pos.			
OUDAII	0	Value		ΝŪ	unit	-	-	
GORRA	0	Touch Probe 1 position neg		PO	Pos.			
	0	Value		κυ	unit	-	-	-
60PCh	0	Touch Probe 2 position pos		BO	Pos.			
OUDCI	0	Value		RU	unit	-	-	-
	0	Touch Probe 2 position neg		PO	Pos.			
	0	Value			unit	-	-	-

List of related objects

Related objects setting

Touch	probe	function	description
-------	-------	----------	-------------

Bit	Value	Description
0	0	Switch off touch probe 1
0	1	Enable touch probe 1
4	0	Trigger first event
	1	Continuous
2	0	Trigger with touch probe 1 input
2	1	Trigger with zero impulse signal of encoder
3	-	Reserved
4	0	Switch off sampling at positive edge of touch probe 1
4	1	Enable sampling at positive edge of touch probe 1
E	0	Switch off sampling at negative edge of touch probe 1
5	1	Enable sampling at negative edge of touch probe 1
6~7		Reserved
0	0	Switch off touch probe 2
0	1	Enable touch probe 2
0	0	Trigger first event
9	1	Continuous
10	0	Trigger with touch probe 2 input
10	1	Trigger with zero impulse signal of encoder
11	-	Reserved
10	0	Switch off sampling at positive edge of touch probe 2
12	1	Enable sampling at positive edge of touch probe 2
10	0	Switch off sampling at negative edge of touch probe 2
10	1	Enable sampling at negative edge of touch probe 2
14~15		Reserved

Touch probe status description

Bit	Value	Description	
0	0	Touch probe 1 is switched off	
0	1	Touch probe 1 is enabled	
4	0	Touch probe 1 has no positive edge value stored	
1	1	Touch probe 1 has positive edge value stored	
0 Touch probe 1 has		Touch probe 1 has no negative edge value stored	
2	1	Touch probe 1 has negative edge value stored	
3~7	-	Reserved	
0	0	Touch probe 2 is switched off	
8	1	Touch probe 2 is enabled	
0 Τοι		Touch probe 2 has no positive edge value stored	
9	1	Touch probe 2 has positive edge value stored	
10	0	Touch probe 2 has no negative edge value stored	
	1	Touch probe 2 has negative edge value stored	
11~15	-	Reserved	

11.STO Function Description

11.1 Preface

11.1.1 Description of safety related words

STO is to cut off the energy supply to the servo motor and stop the torque output. When using this servo drive, the internal electronic energy supply of the servo drive will be cut off.

The purpose of this safety function is as follows.

(1) Comply with uncontrolled stops in IEC/EN 60204-1 category 0.

(2) Prevent accidental restart.

11.1.2 Cautions

Please well understand below cautions for safety to avoid personal injury or equipment damage.

Allow only authorized and qualified personnel to perform installation, start, repair, adjustment, etc.

The technician must know the local law related to this device very well, especially the rules mentioned in this manual.

To comply with safety regulations, the technician must be authorized by the company before start-up, programming, set-up and maintenance of the device.

Danger Improper installation of safety related equipment or systems may result in danger during operation, and may also result in accidents or fatalities.

This servo drive provides STO(Safe Torque Off) function as per IEC/EN 61800-5-2. When external forces are applied to the servo motor itself, additional safety solutions such as braking and balancing is needed.

The STO function meets the following international specifications:

ISO 13849-1: Category 3 PL d IEC 61508 SIL2 IEC 62061 SIL CL 2 IEC 60204-1 Category 0

11.1.3 Residual risk of STO function

The device manufacturer is responsible for all assessed risks and associated residual risks. The following are the residual risks associated with the STO function. Shihlin are not responsible for any damages, injuries, or other accidents caused by residual risks.

(1) The STO function is a function that nullifies the energy supply to the servo motor, but does not physically disconnect the servo drive from the servo motor. Therefore, the risk of electric shock remains. To prevent electric shock, you can use an electromagnetic contactor or a non-fuse circuit breaker on the servo drive main circuit power supply (L1, L2, L3).

(2) The STO function is a function that disables the energy supply capability to the servo motor by cutoff electronic. It does not guarantee the sequence of stopping control or deceleration control.

(3) Please read each safety-related instruction manual carefully to make sure set up, wiring, and adjust correctly.

(4) Use verified or specified parts(soft component) on safety circuits.

(5) The STO function cannot guarantee that the servo motor will not run due to external forces or other factors

(6) Until the installation or adjustment of safety related components in the system is completed, safety cannot be guaranteed

(7) When replacing this servo drive, make sure that the new product is the same model as the previous one. Before running the system after installation, be sure to check the performance of the safety functions.

(8) Analyze and evaluate the machinery or the device.

(9) In order to prevent accumulation of malfunctions, the safety functions should be verified at regular intervals, including a risk assessment of machinery and equipment. Regardless of the system security level, security testing should be performed at least once a year.

(10) When a short-circuit occurs in the power supply module inside the servo drive, the servo motor will rotate a maximum of 0.5 revolution.

(11) The upper frame and lower frame should not share same power supply for the STO input signals (STO1, STO2). Otherwise, when turning off the power supply, the circuitous current may cause the STO malfunction, which means the STO cannot cut the power off.

(12) Use insulation strengthened SELV (safety extra low voltage) power supply for the input and output signals of the STO function.

11.1.4 Specifications

(1) Function structure diagram(STO function)

(2) Operation timing diagram(STO function)

(3) STO wiring diagram

The terminals +24V-STO1-STO2 in the Safety Control Circuit are short-circuited together with a short-circuiting piece during manufacturing process, and the external wiring requirements for STO function are as follows:

(1) Remove the short-circuiting piece between +24V, STO1, STO2.

(2) The wiring is shown in the diagram below. Normally, the ESTOP contact must be short-circuited to run the drive.

(3) In STO mode, when opening ESTOP contact, the drive stops output and the panel displays AL.35 Alarm.

External wiring diagram for STO function

Note: *1 is the short-circuiting piece between +24V, STO1 and STO2. Remove this piece when using STO function.

11.2 STO DI/DO connector(CN6) and signal arrangement

11.2.1 Signal arrangement

Note • Connector pin arrangement is seen from the connector wiring part of the cable.

11.2.2 Signal name

The following table describes the functions of the STO related terminals.

Terminal	Function	Description		
name	T unction			
+24V	Drive Internal +24V power supply	Output Voltage Range: +24V±10% Output current range: below 200mA		
STO1	STO input 1	STO1/STO2 Rated Input Voltage: +24V±10%		
STO2	STO input 2	STO action mode Input voltage level: 0~5V		
0V	STO reference ground	STO response time: <=8mS STO cut-off mode Input voltage level: 18~30V		
DO3	DO3	When the DO3 function code is set to		
DOCOM	Digital Outputs common terminal	0x1F, the STO1/STO2 input status can be monitored.		

The STO action principle is described in the following table

STO1 input	STO2 input	Drive Status	DO3 Output status
Н	L	PWM signal is disabled, torque output stops.	Open
L	Н	PWM signal is disabled, torque output stops.	Open
L	L	PWM signal is disabled, torque output stops.	Open
Н	Н	Normal	Close

STO action principle

If any one of the STO1 signal input and STO2 signal input is L (the input voltage is less than 5V), it indicates that the safety circuit is abnormal(the DO3 output status is Open at this time);Only when they are both H (the input voltage is more than 18V and less than 30V), it means the safety circuit is normal (DO3 output status is Close at this time).

11.3 Detailed description of the interface

This section introduces the details of the input and output signal interfaces (refer to the I/O descriptions in the table). You need to refer to this section before connecting to external machines.

Source input/output interface

The input/output interface of this servo drive can use the Source type. In this case, all input signals and output signals are in Source type. The wiring should follow below diagram:

11.4 STO alarm description and troubleshooting

Reasons for Alarms	Alarm analysis	Alarm troubleshooting
STO function enabled	Check or reconnect STO1/STO2 module wiring, If the	
	issue persists, send back	to the distributor or contact
	Shihlin.	

AL.35: STO1/STO2 module error

AL.36: STO1 module error

Reasons for Alarms	Alarm analysis	Alarm troubleshooting
STO function enabled	Check or reconnect STO1	module wiring, If the issue
	persists, send back to the distributor or contact Shi	

AL.37: STO2 module error

Reasons for Alarms	Alarm analysis	Alarm troubleshooting
STO function enabled	Check or reconnect STO2	module wiring, If the issue
	persists, send back to the distributor or contact Shill	

AL.38: Internal diagnostic circuit error

Reasons for Alarms		ms	Alarm analysis	Alarm troubleshooting
Internal	diagnostic	circuit	After confirming that all external wiring is correct and	
error			meets the requirements, then restart the power, If the	
			issue persists, send back t	to the distributor or contact
			Shihlin.	

STO test and troubleshooting

After wiring according to the STO wiring diagram, please follow the below steps to test the STO function:

(1).When the drive is powered on, make sure that the input voltage of STO1 and STO2 is between 18~30V. The drive enters the standby mode and waits for the operation instruction, and no alarm code shows on panel screen.

(2).Press the button to run the motor. After the output speed reaches the target, press the emergency button or other to make both the input voltage of STO1 and STO2 are within 0~5V, and the drive enters the STO mode, then the drive stops and the panel displays AL.35, the response time between STO1 and STO2 input voltage and output voltage stop<=8mS. Restore STO1 and STO2 input voltage to 18~30V, the panel displays no abnormal after power cycling, and then the drive enters the standby mode, waiting for the operation command.
(3).Press the button to run the motor. After the output speed reaches the target, press the emergency button or other to make the input voltage of STO1 is within 0~5V and STO2 input voltage is within 18~30V, the drive enters the STO mode, then the drive stops and the panel displays AL.36, the response time between STO1 input voltage and output voltage stop<=8mS. Restore STO1 input voltage to 18~30V, the panel displays no abnormal after power cycling, and then the drive enters the standby mode, waiting for the operation command.

(4).Press the button to run the motor. After the output speed reaches the target, press the emergency button or other to make the input voltage of STO1 is within 18~30V and STO2 input voltage is within 0~5V, the drive enters the STO mode, then the drive stops and the panel displays AL.37, the response time between STO2 input voltage and output voltage stop<=8mS. Restore STO2 input voltage to 18~30V, the panel displays no abnormal after power cycling, and then the drive enters the standby mode, waiting for the operation command.

(5).If the above 4 steps can be proceeded successfully, it means that the STO function circuit is normal. It is as shown in the following table. Otherwise, please refer to Section 11.4 alarm code and troubleshooting.

STO1	STO2	Drive status	DO3 output			
input	input	Drive status	status			
Н	L	PWM signal is disabled, torque output stops.	Open			
L	Н	PWM signal is disabled, torque output stops.	Open			
L	L	PWM signal is disabled, torque output stops.	Open			
Н	Н	Normal	Close			

STO action principle

Note: If any one of the STO1 signal input and STO2 signal input is L (the input voltage is less than 5V), it indicates that the safety circuit is abnormal. Only when they are both H (the input voltage is more than 18V and less than 30V), it means the safety circuit is normal.

12.Troubleshooting

CAUTION

When an alarm occurs, you should troubleshoot it first to ensure safety. Wait until the alarm is cleared before running, otherwise it may cause accidental injury.

12.1 Alarm list and clear methods

Alarms or warnings are displayed when an error occurs during operation. When an alarm or warning occurs, please follow the procedure in section 12.2. Set PD19 to xxx1 to output the alarm code.

The alarm code is output as ON/OFF between each PIN and SG, and warnings (AL12-AL1B) have no code.

When alarm occurs, the drive output the alarm in below table. In normal state, it output the signal as per setting.

(CN1-1: DO1, CN1-3: DO2, CN1-5: DO3)

		Ala	arm co	de		How	to clear the a	larm?
		CN1-1	CN1-3	CN1-5		Power	Press SET	RES
	Dieploy					OFF	button in	signal
	Display				Alarm name	→ON	current	
							alarm screen	
	AL.01	0	1	0	Over voltage	0		
	AL.02	0	0	1	Under voltage	0	0	о
	AL.03	0	1	1	Over current	0		
	AL.04	0	1	0	Regeneration error	0	0	о
	AL.05	1	0	0	Overload 1	0	0	0
	AL.06	1	0	1	Over speed	0	0	о
	AL.08	1	0	1	Position deviation excessive	0	0	0
_	AL.09	0	0	0	Serial communication error	0	0	о
arm	AL.0A	0	0	0	Serial communication timeout	0	0	0
A	AL.0B	1	1	0	Position encoder error 1	0		
	AL.0D	1	1	0	Fan error	ο		
	AL.0E	0	0	0	IGBT overheat	0		
	AL.0F	0	0	0	Memory error	0		
	AL.10	0	0	0	Overload 2	0		
	AL.11	1	1	1	Motor mismatch	0		
	AL.20	1	1	1	Motor collision error	0		
	AL.21	1	1	1	Motor UVW disconnection	0		

		Alarm code		de		How to clear the alarm?		
		CN1-1	CN1-3	CN1-5		Power	Press SET	RES
	Display					OFF	button in	signal
					Alarm name	→ON	current	
							alarm screen	
	AL.22	1	1	0	Encoder communication error	0		
	AL.24	0	0	0	Motor encoder type error	0		
	AL.26	1	1	0	Encoder error 3	0		
	AL.27	1	1	0	Encoder error 4	о		
	AL.28	1	1	0	Encoder overheat	о		
	AL.29	1	1	0		Automatic	cleared after	eliminating
					Encoder enor 5(overnow)		the cause	
	AL.2A	1	1	0	Absoluto opcodor orror 1	Automatic	cleared after	eliminating
							the cause	
	AL.2B	1	1	0	Absolute encoder error 2	Automatic	cleared after	eliminating
							the cause	
	AL.2E	0	1	1	Control circuit error	о		
	AL.2F	0	1	1	Regenerative energy error	о		
larn	AL.30	0	1	1	Pulse output frequency	0		
◄					excess			
	AL.31	0	1	1	Over current 2	0		
	AL.32	0	1	1	Control circuit error 2	0		
	AL.34	0	0	0	Overload 4	0		
	AL.35	1	0	1	STO module error	о	о	0
	AL.36	1	0	1	STO1 module error	0	0	0
	AL.37	1	0	1	STO2 module error	0	0	0
	AL.38	1	0	1	Internal diagnostic circuit error	0		
	AL.80				Sync Manager WDT error	0	о	0
	AL.81				EtherCAT state switching	о	0	0
					program error			
	AL.82				EtherCAT sends error state	о	о	о
					machine value			
	AL.83				ESC DC register setting alarm	0	о	0
	AL.84				Synchronization error	0	0	0
	AL.85				ESC initialization error	0	0	0
	AL.86				Watchdog buffer setting error			
	AL.87				SII version validation error	0	0	0

		Al	arm co	de		How	to clear the a	alarm?
		CN1-1	CN1-3	CN1-5		Power	Press SET	RES
	Display					OFF	button in	signal
					Alarm name	→ON	current	
							alarm screen	
	AL.88				Communication cycle time	ο	0	0
					setting error			
	AL.89				Wrong control mode	о	о	0
	AL.90				Mailbox SM related settings			
E					error			
vlarr					Mailbox SM2/3 related	0		0
4					settings error	0	0	0
					EtherCAT data transmission			
					mode setting error			
	AL.91				Tx/Rx PDO data type			
					assignment error			

		Alarm code		de		How	to clear the al	arm?	
		CN1-1	CN1-3	CN1-5		Power	Press SET	RES	
	Display					OFF	button in	signal	
					Alarm name	→ON	current alarm		
							screen		
	AL.12				Emergency stop				
	AL.13				Forward and reverse	Automati	c cleared after (liminating	
					limit error		the cause	Similaring	
	AL.14				Positive software limit				
	AL.15				Negative software limit				
	AL.16				Farly overload warning	Automatio	c cleared after e	eliminating	
							the cause		
	AL.17				ABS timeout warning	0	0	0	
	AL.19				Pr command error		Perform homing	g	
	AL.1A				Undefined index	Automatic cleared after eliminati		liminating	
					coordinate		the cause		
	AL.1B				Position shift warning				
0	AL.1C				Early overload warning 4	Automatio	c cleared after e	eliminating	
Luin					g		the cause		
Ма	AL.2C				Absolute encoder error 3	Automatio	c cleared after e	eliminating	
							the cause		
	AL.2D				Encoder battery unde	power cy	cling after elimi	nating the	
					voltage		cause	1	
	AL.61				Parameter group range	9 0	o(Note 1)	0	
					excess				
	AL.62				Parameter numbe	r o	0	0	
					range excess				
	AL.63				Pr mode paramete	r o	0	0	
	AL 04				range excess				
	AL.64				Pr mode parameter write	o	0	0	
						4 -			
	AL.05				Reverse rotation limi	u O	0	0	
					enor				

Note 1: Turning the drive Servo OFF \rightarrow Servo ON can also clear the warning.

Note 2: The DO ALM pin will be active when an alarm occurs.

Note 3: The DO WNG pin will be active when a warning occurs.

12.2 Causes and corrective actions

AL.01 Over voltage

Alarm cause	Checking method	Corrective action
Main circuit voltage	Use a voltmeter to check if the input	Use the right voltage source
exceeds the rated	voltage of the main circuit is within	or connect the voltage
allowable value.	the allowable rated value.	regulator in series.
Incorrect power input	Use a voltmeter to check if the power	Use the right voltage source
(incorrect power system).	system meets the spec.	or connect the voltage
Duis a houdescone foileane		Detume to distributor on
Drive hardware failure.	If the alarm occurs when the input	Return to distributor or
	voltage of the main circuit measured	contact Shihlin
	by the voltmeter is within the	
	allowable rated value	
Built-in regenerative	Check whether the PD short-circuited	Wire the short-circuited
resistor or regenerative	piece is connected correctly, or	piece correctly or change the
device is disconnected.	whether the regenerative resistor or	wiring cable.
	device wiring is disconnected.	
Burned or damaged of	Check whether the regenerative	When using the built-in
the built-in regenerative	resistor or regenerative related	regenerative resistor, please
resistor or regenerative	device is burnt or damaged.	replace the drive; When
related device		using the regenerative
		related device, please
		replace it.
The capacity of built-in	Refer to section 7.5.1, check the	Increase the capacity or add
regenerative resistor or	capacity of regenerative resistor.	additional regenerative
regenerative related		device.
device is insufficient.		

AL.02 Under voltage

Alarm cause	Checking method	Corrective action
Main circuit voltage is	Check if the wiring of input voltage	Check if the voltage wiring is
below the rated value.	for the main circuit is normal	correct.
No voltage input to the	Use a voltmeter to check if the main	Check the switch of the power
main circuit.	circuit voltage is normal	supply
Incorrect power input	Use a voltmeter to check if the	Check if using the right
(incorrect power	power system complies with the	voltage source or connecting
system).	specifications.	the voltage regulator in series
In the 7KW model, the	Check if the short-circuited piece	If P1 and P are not connected
short-circuited piece	between P1 and P has been	to a DC reactor, short-circuit
between P1 and P are	removed.	P1 and P.
removed.		

AL.03 Over current

Alarm cause	Checking method	Corrective action
Motor wiring is error	Check if you have followed the wiring	Followed the wiring
	sequence for connecting the motor to	sequence as described in
	the servo drive as described in this	this manual.
	manual	
The servo drive output is	Check the connection between the	Check and make sure that
short-circuited.	motor and servo drive and make sure	the wire is not
	that the wire is not short-circuited.	short-circuited. Do not
		expose the metal part of the
		wiring.
IGBT is abnormal.	Check if the temperature of the heat	Return to distributor or
	sink is abnormal.	contact Shihlin.
The control parameters	Check if the setting value of the	Reset the parameters to the
setting are abnormal.	parameters are much greater than	factory default setting and
	the default.	then modify the setting
		gradually.

AL.04 Regeneration error

Alarm cause	Checking method	Corrective action
Invalid regenerative brake	Check if the regenerative brake	Return to distributor or
transistor.	transistor is short-circuited.	contact Shihlin.
The regenerative resistor	Check the connection of the	Reconnect the regenerative
is disconnected	regenerative resistor.	resistor.

AL.05 Overload 1

Alarm cause	Checking method	Corrective action
The load is over the	Check if the load is too large.	Increase the motor capacity
rated value continuously.		or reduce the load.
Improper parameters	Check if there is any mechanical	Execute auto acceleration
setting.	vibration.	/deceleration tuning.
Unstable system.	Acceleration/deceleration time	Increase acceleration/
	constant is too short.	deceleration time.
Incorrect wiring of motor	Check if the wiring of the UVW and	Wiring correctly.
and encoder.	the position encoder cables are	
	correct.	

AL.06 Over speed

Alarm cause	Checking method	Corrective action
The input frequency of	Check whether the input frequency of	Correctly set the pulse
pulse command is too	pulse command is too high.	frequency.
high.		
Improper setting for	Check whether the acceleration	Increase the acceleration
acceleration/deceleration	/deceleration time constant are too	/deceleration time constant.
time parameters.	short.	
Unstable servo system	Check whether the system has been	1.Set proper gain value.
which cause large	vibrating.	2.If it's not working,
overshoot.		(a).Decrease the load inertia
		ratio.
		(b).Change the accelerate
		/decelerate time constant.

AL.08 Position deviation excessive

Alarm cause	Checking method	Corrective action
Improper setting of	Check if the	Increase the acceleration
acceleration/deceleration	acceleration/deceleration time	/deceleration time constant.
time parameters.	constant are too short.	
Improper torque limit	Check if the torque limit	Increase the torque limit
setting.	parameter(PA05) setting is too	parameter setting value.
	small.	
Gain setting is too low.	Check if the position gain (PB07) is	Increase the position loop
	too small.	gain value.
Excessive external load.	Check the external load.	Reduce the external load or
		re-evaluate the motor
		capacity.

AL.09 Serial communication error

Alarm cause	Checking method	Corrective action
Incorrect communication	Check if the communication	Correctly set the
protocol setting.	protocol setting is correct.	communication parameter
		value.
Incorrect communication	Check communication address.	Correctly set communication
address.		address.
Incorrect communication	Check the access value.	Correctly set the
value.		communication value.

Alarm content: AL.09 occurs when RS-232/485 communication is abnormal.

AL.0A Serial communication timeout

Alarm cause	Checking method	Corrective action
Servo drive has not	Check if the communication	Replace the cable or reconnect
received the	cable is broken or loose.	the wiring.
communication message		
for a long time		
Improper parameter setting	Check the setting value of PC23.	Correctly set the value of
for PC23.		PC23.

AL.0B Position encoder error 1

Alarm cause	Checking method	Corrective action
Encoder wiring is incorrect.	Check if the wiring follows the	Wiring correctly.
	instructions in the user manual.	
Encoder connector is	Check if the connector is well	Re-install.
loose.	connected.	
Encoder is damaged.	Check if the motor is abnormal.	Replace the motor.
Encoder wiring is poor.	Check if there is any poor wiring.	Reconnect the wiring.

AL.0C Position encoder error 2

Alarm cause	Checking method	Corrective action
Encoder initial magnetic	Turn the motor shaft and cycle the power, if the issue persists,	
field error	send back to the distributor or contact Shihlin.	
Bad wiring of position encoder	Check if there is any poor wiring.	Reconnect the wiring

AL.0D Fan error

Alarm cause	Checking method	Corrective action
Fan stops working.	Turn off the power and replace the fan, or send back to distributor	
	or contact Shihlin.	

AL.0E IGBT overheat

Alarm cause	Checking method	Corrective action
The load is over the	Check if the servo drive overload or	Reduce the load or replace a
rated value continuously,	motor over current.	larger capacity drive.
or the servo drive output	Check if the wiring of servo drive	
is short-circuited.	output is correct.	

AL.0F Memory error

Alarm cause	Checking method	Corrective action
Memory data access	Reset the parameters and then cycle	If the issue persists, send the
abnormal.	the power	servo drive back to the
		distributor or contact Shihlin.

AL.10 Overload 2

Alarm cause	Checking method	Corrective action
Mechanical collision.	Check if the path configuration is	Adjust the motion curve or
	correct.	add limit switches.
Motor wiring is wrong.	Check if the motor wiring is correct.	Wiring correctly.
The System is operating	Check if the mechanical has high	Reduce the rigidity setting or
with vibration.	frequency noise.	change to manual adjustment.
Encoder error	Check if encoder is normal.	Replace servo motor.

AL.11 Motor mismatch

Alarm cause	Checking method	Corrective action
Motor and drive capacity	Check if the capacity for motor and	Use the correct motor which
are inconsistent.	drive are match.	matches the drive.

AL.12 Emergency stop

Alarm content: AL.12 occurs when emergency stop button is pressed.

Alarm cause	Checking method	Corrective action
The emergency stop	Make sure the emergency stop	Release the emergency stop
button is pressed.	button is off.	switch

AL.13 Forward and reverse limit error

Alarm cause	Checking method	Corrective action
Positive limit switch is	Make sure the positive limit switch is	Release the positive limit
triggered.	off.	switch.
Negative limit switch is	Make sure the negative limit switch	Release the negative limit
triggered.	is off.	switch.

AL.14 Positive software limit error

Alarm cause	Checking method	Corrective action
In Pr Mode, if the	The software positive limit is calculated	Adjust the pulse number of
position command	based on the position command rather	position command to be
pulse number exceeds	than the actual feedback position,	smaller than the positive
the software positive	because the command always arrives	software limit.
limit PF86.	earlier than the feedback. When the limit	
	protection is enabled, the actual position	
	may not exceed the limit, you can set an	
	appropriate deceleration time to achieve	
	the requirement. Refer to the description	
	of PF86.	

AL.15 Negative software limit error

Alarm cause	Checking method	Corrective action
In Pr Mode, if the	Stop the motor by PF81 setting keep it	Adjust the pulse number of
position command	in SERVO LOCK status	position command to be
pulse number less than		greater than the negative
the software negative		software limit.
limit PF87.		

AL.16 Early overload warning

Alarm cause	Checking method	Corrective action
The load exceeds the	1.Check if the servo drive is overloaded.	1.Refer to the corrective
protection curve of	2.Check if the parameter PA17(overload	actions of AL.05
PA17 setting time	output level percentage) is too small.	2.Set the PA17 value
(Please refer to section		higher, or set the value
14.2 of SDC series		greater than 100 to disable
manual for protection		the warning function.
curve).		

AL.17 ABS timeout warning

Alarm cause	Checking method	Corrective action
The signal waiting time	Check if the host has not sent a signal	Turn off the ABSE or
of absolute position	request (ABSQ) for more than 5	ABSM signal terminal to
communication is too	seconds.	clear the alarm, and check
long.		whether the
		communication format of
		the controller is wrong.

AL.19 Pr command error

Alarm cause	Checking method	Corrective action
The position	Incremental system:	Execute homing.
command counter	If in PR mode, the motor keeps running in a	
overflows.	single direction, it will cause the feedback	
	position register overflow and the coordinate	
	system fail to reflect the correct position. This	
	error occurs if the PR absolute positioning	
	command is issued at this time.	
	Absolute system:	
	This error occurs when the absolute positioning	
	command is issued in the following conditions:	
	1. The feedback position register overflows.	
	2. The homing program is not executed after	
	changing the E-Gear ratio (PA06, PA07).	
	3.Execute absolute position command when	
	DO:HOME signal is OFF.	

AL.20 Motor collision error

Alarm cause	Checking method	Corrective action
When the motor	1.Check if PA15 is valid.	1.Set PA15 to 0 if you
current reaches the	2.Check if PA15 setting is too low, and if PA16	open it by mistake.
value of PA15 and	is too short.	2.Set with actual
the protection time		torque. If the setting is
of PA16 has run out.		too low, it will cause
		malfunction, and if the
		setting is too high, the
		protection function will
		be invalid.

AL.21 Motor UVW disconnection

Alarm cause	Checking method	Corrective action
When Motor U,V,W	Check if the Motor U,V,W cable is loose.	1.Reconnect the
cable disconnection		U,V,W cables.
is detected.		2.If the connection is
		good, send back to
		distributor or contact
		Shihlin.

AL.22 Encoder communication error

Alarm cause	Checking method	Corrective action
The encoder has	1.Check if the grounding of	1.Make sure the power cable (green
three consecutive	motor is normal.	end) is grounded to the servo drive
CRC code errors or	2.Check whether the encoder	heat sink.
internal register	signal line is separated from the	2.Make sure the encoder signal
errors.	power line or high current line to	cable is separated from the power
	avoid interference.	supply or any high-current cables to
	3.Check if it's shielded cable	avoid interference
		3.Use shielded cable.
		4.If the issue persists, send it back
		to the distributor or contact Shihlin.

AL.24 Motor encoder type error

Alarm cause	Checking method	Corrective action
The incremental	1.Check the motor is incremental	Please use absolute motor to enable
motor is not able to	type or absolute type encoder.	absolute function.
perform absolute	2.Check parameter PA28.	If absolute function is not needed,
function.		please set PA28 to 0.

AL.26 Encoder error 3

Alarm cause	Checking method	Corrective action
Encoder LED light	Restart the motor and check	If the issue persists, send it back to
decay or encoder	whether the alarm recurs.	the distributor or contact Shihlin
rotation count value		
is in error.		

AL.27 Encoder error 4

Alarm cause	Checking method	Corrective action
The internal register	1.Check if the grounding of	1.Make sure the power cable (green
of encoder is in	motor is normal.	end) is grounded to the servo drive
error.	2.Check if the encoder signal line	heat sink.
	is separated from the power line	2.Make sure the encoder signal
	or high current line to avoid	cable is separated from the power
	interference.	supply or any high-current cables to
	3.Check if it's shielded cable	avoid interference
		3.Use shielded cable
		4.If the issue persists, send it back
		to the distributor or contact Shihlin.

AL.28 Encoder overheat

Alarm cause	Checking method	Corrective action
Encoder operating	Put encoder away from heat	1.Do not operate in high
temperature is higher than	source and do not operate in	temperature environment and
95℃.	high temperature environment.	wait for the encoder board
		cool down to room
		temperature.
		2.If the issue persists, send it
		back to the distributor or
		contact Shihlin.

AL.29 Encoder error 5

Alarm cause	Checking method	Corrective action
The move distance of the	Check if the absolute motor	Re-execute homing and
absolute position revolution	revolution number is within the	initialize absolute coordinate
number is out of range.	range between -32768 and	according to chapter 15
	+32767.	description.

AL.2A Absolute encoder error 1

Alarm cause	Checking method	Corrective action
Encoder backup battery	Check whether the battery	Replace the battery, and then
voltage is too low.	voltage is lower than 2.45V	perform homing and initialize
	(TYP).	absolute coordinate
		according to the description of
		chapter 15 or PA29.
Poor connection or	1.Check the encoder wiring.	Connect or fix the connection
disconnection of battery	2.Check the connection	to make sure the encoder
power supply circuit.	between the battery external	power supply is normal, and
	box and drive.	perform homing, and then
		initialize absolute coordinate
		according to the description of
		chapter 15.

AL.2B Absolute encoder error 2

Alarm cause	Checking method	Corrective action
The revolution count value of	Restart the motor and check	If the issue persists, send it
absolute encoder is in error.	whether the alarm recurs.	back to the distributor or
		contact Shihlin.

AL.2C Absolute encoder error 3

Alarm cause	Checking method	Corrective action
Replace the battery when the drive	Do not replace or remove	Perform homing and
control power is OFF.	the battery when the drive	initialize absolute
	control power is OFF.	coordinate according to
		Chapter 15 or PA29
		description.
After the absolute function is enabled,	1.Install the battery	Perform homing and
the absolute position coordinate	2.Check the connection	initialize absolute
initialization is not completed.	between the battery	coordinate according to
	external box and drive.	chapter 15 or PA29
	3.Check the encoder wiring	description.

AL.2D Encoder battery under voltage

Alarm cause	Checking method	Corrective action
Encoder backup battery voltage is too	1.Check whether the panel	Replace the battery
low.	battery voltage is lower than	when the drive control
	3.0V (TYP).	power is ON. After
	2.Check if the battery voltage	that AL.2D is
	is lower than 3.0V(TYP)	automatically cleared.

AL.2E Control circuit error

Alarm cause	Checking method	Corrective action
When the motor is running with large	Check whether the servo ON	Correctly operate the
external load, the servo ON (SON)	(SON) is operate by mistake.	servo ON (SON)
state is instantly switched OFF \rightarrow ON.		command.
The drive current feedback is	Restart the drive. If the issue persists, send your drive	
abnormal.	back to the distributor or contact Shihlin.	

AL.2F Regeneration energy error

Alarm cause	Checking method	Corrective action
The regenerative load rate exceeds	1.Check if the acceleration	1.Adjust the
100%.	/deceleration time is too	acceleration
	short.	/deceleration time, or
	2.Check if the frequency of	reduce the frequency
	forward and reverse rotation	of forward and
	is too fast.	reverse rotation.
		2.Restart the power.

AL.30 Pulse output frequency excess

Alarm cause	Checking method	Corrective action
Pulse output error which is	Check the error history if it is	Follow the corrective action of
caused by encoder error.	accompanied with an encoder	AL.0B,AL.0C,AL.22,AL.26,
	error (AL0B,AL0C,AL22,	AL.27.
	AL26,AL27).	

AL.31 Over current 2

Alarm cause	Checking method	Corrective action
The drive current feedback is	Restart the drive. If the issue persists, send your servo drive	
abnormal.	back to the distributor or contact Shihlin.	

AL.32 Control circuit error 2

Alarm cause	Checking method	Corrective action
FPGA is abnormal.	Cycle the power of drive. If the issue persists, send your servo	
	drive back to the distributor or contact Shihlin.	

AL.34 Over load 4

Alarm cause	Checking method	Corrective action
The load is over the rated value	Check if the frequency of the	Increase motor capacity or
continuously	repeatable operation cycle is	reduce operation cycle.
	too fast.	
Unstable system.	Check whether the	Increase the setting value of
	acceleration /deceleration	acceleration/deceleration
	time setting is too short.	time.

AL.35 STO module abnormal

Alarm cause	Checking method	Corrective action
STO safety signal is triggered.	Check the STO module wiring and reconnect, If the issue	
	persists, send your servo drive	back to the distributor or
	contact Shihlin.	

AL.36 STO1 module abnormal

Alarm cause	Checking method	Corrective action
STO safety signal is triggered.	Check the STO1 module wiring and reconnect, If the issue	
	persists, send your servo drive back to the distributor or	
	contact Shihlin.	

AL.37 STO2 module abnormal

Alarm cause	Checking method	Corrective action			
STO safety signal is	Check the STO2 module wiring and re	econnect, If the issue			
triggered.	persists, send your servo drive back to the distributor or contact				
	Shihlin.				

AL.38 Internal diagnostic circuit error

Alarm cause	Checking method	Corrective action			
Internal diagnostic circuit is	Check if all the external wiring is corre	ect and cycle the power. If			
in error	the issue persists, send your servo drive back to the distributor or				
	contact Shihlin.				

AL.80 Sync Manager WDT error

Alarm cause	Checking method	Corrective action
Hardware incorrect wiring	Check if the EtherCAT cable is	After troubleshooting the
	properly connected and the	condition, an error reset
	connection lamps in the	command is issued by the
	communication ports are illuminated	upper controller, or the
	correctly.	drive is rebooted for
		initialization.
Wire interference	This alarm occurs when the servo is	Preliminary eliminate the
	running on-line. If the hardware	possible sources of
	connection is normal, it may be	interference , use
	caused by communication	shielded and metal cased
	interference.	communication cable. If
		the issue persists, please
		contact the distributor or
		Shihlin for help.

AL.81 EtherCAT state switching program error

Alarm cause		Checking method	Corrective action		
The EtherCAT state		The upper control EtherCAT state	The upper controller sends		
machine executes	а	machine must comply with the	reset command to clear		
command which is	not	following sequence, Init -> Pre-OP	the alarm.		
comply with no	ormal	-> SAFE-OP ->OP			
procedures.					

AL.82 EtherCAT sends error state machine value

Alarm cause	Checking method	Corrective action
The EtherCAT state machine	Check EtherCAT state command by	The upper controller sends
send an undefined state	the upper controller to troubleshoot	reset command to clear the
command.	the condition and execute the correct	alarm.
	command.	

AL.83 ESC DC register setting alarm

Alarm cause	Checking method	Corrective action
ESC DC register Setting is in	Check the related register setting of	Reset the DC mechanism
error.	Distributed Clocks.	related register.

AL.84 Synchronization error

Alarm ca	ause	Checking method	Corrective action
Synchronization	mechanism	Check the value of PC38 and check	If the issue persists, please
detection error		the initial setting of the EtherCAT	contact the distributor or
		synchronization mechanism (when	Shihlin for help.
		PC38=0, the alarm is not able to be	
		detected).	

AL.85 ESC initialization error

Alarm cause	Checking method	Corrective action
Control board is in error	Reboot the drive, if the issue persists, r	eturn to distributor or contact
	Shihlin.	

AL.86 Watchdog buffer setting error

Ala	rm cause	e	Checking method Corrective act					tion			
Watchdog	buffer	register	The	final	product	value	of	ESC	Reset	Watchdog	register
value setting is in error			regis	register address 0x0400 and 0x0420					Values		
			is les	is less than the following limitations							
			1.Fre	1.Free Run mode: the value setting is							
			less	less than 2ms.							
			2.DC	2.DC mode: the value setting is less							
			than	2 time	s the com	municat	tion	cycle.			

AL.87 SII version validation error

Alarm cause		Checking	method	Corrective action	
The SII version conflicts with	Check	related	values	of	Send back to distributor or
the firmware version.	Vendor_	ID/Product	_code/Revision	Shihlin to upgrade the SW.	
	mber (ol	bj1018_lder	ntity)		

AL.88 Communication cycle time setting error

Alarm c	ause		Checking method	Corrective action
Communication	cycle	time	Check the communication cycle time	Reset communication cycle
setting is in error			value of the upper controller (cycle	time
			time and shift time value, avoid shift	
			time value greater than cycle time, or	
			set unsupported cycle time), the	
			following communication cycle times	
			125us/250us/500us/1ms/2ms/4ms/8m	
			s are supported.	

AL.89 Wrong control mode

Alarm cause	Checking method	Corrective action
The value of 6060h(Mode of	Check if the value of object 6060h	Resend the correct
operation) is not supported by	comply with the control mode setting	command and reset by
the control command.	in user manual.	upper controller command.

AL.90 Mailbox SM related settings error

Alarm cause	Checking method	Corrective action		
Mailbox SM setting is in error	Check the setting of SM0/1 register	Reset Sync Manager		
	address 0x08xx as follows.	related settings, if the issue		
	1.The reading and writing start length	persists, send it back to the		
	of SM should not overlap.	distributor or contact		
	2.The control register of ESC SM is	Shihlin.		
	set incorrectly.			
	3.SM length setting is out of range.			
	4.SM physical address is not in the			
	specified range.			
SyncManager2/3 setting is in	Check the setting of SM2/3 register	Reset Sync Manager		
error	address 0x08xx as follows.	related settings, if the issue		
	1.The reading and writing start length	persists, send it back to the		
	of SM should not overlap.	distributor or contact		
	2.The control register of ESC SM is	Shihlin.		
	set incorrectly.			
	3.SM length setting is out of range.			
	4.SM physical address is not in the			
	specified range.			
EtherCAT data transmission	Check the internal data contents of	Reset Sync Manager 2/3		
mode setting is in error	objects 1C32h:01 and 1C33h:01, or	related settings		
	set the unsupported Sync mode.			

AL.91 TxPDO/RxPDO data type assignment error

Alarm cause			Checking method	Corrective action	
TxPDO/RxPDO	data	type	Check if the TxPDO/RxPDO Mapping	Reset TxPDO/RxPDO Data	
assignment is in error			object exceeds 32 bytes.	Settings	

AL.1A Undefined index coordinate

Alarm cause	Checking method	Corrective action	
When using the indexing	Check whether homing has been	1.Before using the indexing	
function, you need to execute	executed.	function, execute homing	
homing to define the origin of		first to avoid this alarm.	
the indexing coordinates.		2.Use DI:Alm reset function	
otherwise, an alarm will occur.		to clear the alarm.	
		3.This alarm can also be	
		cleared when Servo is ON.	

AL.1B Position shift warning

Alarm cause	Checking method	Corrective action	
When DO: MC_OK	When DO:MC_OK is already on, it	1.Turn on RES signal.	
ON→OFF. Please refer to	may turn off when DO:INP turns off,	2.Press Set button in alarm	
PD28 description.	The external force after motor	display screen.	
	completed positioning may cause the	3.Cycle the power.	
	position shift.	4.Cycle the SON signal	

AL.61 Parameter group range excess

Alarm cause	Checking method	Corrective action	
The parameter group of PR is	The parameter group setting is out of	Clear the alarm by any of	
out of range.	range when writing the parameter by	the following solutions:	
	PR procedure.	1.Cycle the power.	
		2.Press SET button at	
		alarm display screen.	
		3.Turn on RES signal.	

AL.62 Parameter number range excess

Alarm cause	Checking method	Corrective action	
The parameter number of PR	The parameter group setting is out of	Clear the alarm by any of	
is out of range.	range when writing the parameter by	the following solutions:	
	PR procedure.	1.Cycle the power.	
		alarm display screen.	
		3.Turn on the RES signal.	

AL.63 Pr mode parameter range excess

Alarm cause				Checking method	Corrective action	
The	parameters	parameters of PR		The parameter group setting is out of	Clear the alarm by any of	
comm	command Type 8 are out of		ut of	range when writing the parameters by	the following solutions:	
range.			PR procedure.	1.Cycle the power.		
				2.Press the SET button in		
				alarm display screen.		
				3.Turn on the RES signal.		

AL.64 Pr mode parameter write error

Alarm cause	Checking method	Corrective action	
Write the parameters by PR	Check if PR program writes the	Revise PR commands and	
command TYPE 8 during	parameters during Servo ON or the	parameters	
Servo ON.	value is not reasonable.		

AL.65 Reverse rotation limit error

Alarm cause	Checking method	Corrective action	
When PD37=0001, the negative	Check the position of switch.	Release negative limit	
limit switch is triggered.		switch to clear the alarm.	

13.Product Specifications

13.1 Standard specifications of servo drive

Driv SDC	e M 	odel ⊒E2	010 020 040 075 100						
Serv SME	/o M E-001	otor Model	L010	L020	L040	L075	L100		
Motor capacity			100W	200W	400W	750W	1.0KW		
		Voltage							
		50/60Hz		Single-phase or Three-phase 200~240 VAC					
		Permissible							
	Ŧ	voltage		Single-phase	or Three-phas	a 170∼264 V			
	ndu	Variation		Single-phase of Three-phase 170~204 VAC					
er	-	50/60Hz							
ŇO		Permissible							
		Frequency	±5%						
		Variation							
	Ŧ	Voltage	0~240VAC						
	Jutpu	Current	1.0A 1.8A 3.2A 5.8A						
	0	Frequency	0~250Hz						
Co	ntro	l method	IGBT-PWM control (SVPWM)						
Dy	nam	ic brake	Software(built-in), Hardware(optional purchase)						
			Over current, under voltage, over voltage, overheat, overload(electron						
Dra	otoci	tion function	accumulated heat), encoder error protection, over speed protection,						
			excessive deviation protection, motor mismatch error, motor collision						
			error, motor UVW cable disconnection, control circuit error.						
			Magnetic er	ncoder resolut	on:				
For	adha	ock encoder	Single turn:	17bit (131072	Pulse); N	lulti-turn: 17bit	/16bit		
reeuback encouer		ICK GIICUUGI	Optical encoder resolution:						
			Single turn: 24bit (16777216 Pulse); Multi-turn: 24bit/16bit						
Communication interface			EtherCAT,	USB					

	Command source	EtherCAT communication control.
ode	smoothing method	Low-pass filter smoothing / Linear smoothing / PS-curve smoothing
l me	Command pulse	E-gear ratio A/B times A: 1 to 67108864, B: 1 to 67108864
ntro P)	ratio	(Limitation: 1/50 < A/B < 64,000)(24bit encoder)
col	Tatio	(Limitation: 1/50 < A/B < 25,600)(17bit encoder)
sition	Deviation excess	±3 revolutions
Ро	Torque limit	EtherCAT communication setting
	Feed-forward	Internal parameter setting or EtherCAT communication setting (0 to
	compensation	200%)
	Speed control range	Internal speed command 1:5000
qe	Command source	EtherCAT communication control
ю ш	smoothing	Low-pass filter
v) v	mothod	Linear acceleration and deceleration curve
con (CS	method	S-curve smoothing
ed		Load fluctuation 0~100% maximum ±0. 01%
Spe	Speed change rate	Power fluctuation ±10% maximum 0.01%
	Torque limit	EtherCAT communication setting
	Bandwidth	Maximum 2KHz
itrol	Command source	EtherCAT communication control
que con mode (CST)	smoothing method	Low-pass filter smoothing
Tore	Speed limit	EtherCAT communication setting
		Servo on, forward and reverse rotation limit, torque direction option,
put		speed command option, forward and reverse rotation command,
lin	Digital Input	proportional control switching, torque limit switching, alarm reset,
gita		emergency stop, gain switching, position command option, position
Diç		command trigger, motor stop, event trigger command, origin point,
		homing activated.

Digital output	Digital Output	Torque limit reached, speed limit reached, servo ready, zero speed reached, target position reached, target speed reached, servo alarm, servo warning, homing completed, overload level reached, internal position attained, position command overflows, software positive limit reached, software reverse limit reached.							
t	Temperature	$0^{\circ}C \sim 55^{\circ}C$ (If the operating temperature is above 45°C, forced cooling isnperaturerequired)Storage: -20~65°C (non-freezing)							
onmen	Humidity	Maximum 9 Storage: be	Maximum 90% RH (non-condensing) Storage: below 90%RH (non-condensing)						
Envir	Installation site	site Indoors (avoid direct sunlight), no corrosive vapor, avoid flammable fumes and dust.							
	Altitude	Below 1000	m						
VibrationMaximum 5.9m/s²									
Coo	ling method	Air convect	ion cooling. Ope	en type(IP20)	Fan cooling. O	pen type(IP20)			
Wei	ght(kg)	1.4	1.4	1.4	1.7	1.7			

Note: *1 when command is the rated speed, the speed change rate calculation is: (speed with no load - speed with full load) / rated speed.

13.2 Interface of servo drive

DIMENSIONAL (unit[mm])

MODEL	W	W1	Н	H1	H2	D	D1	S
SDC010E2								
SDC020E2								
SDC040E2	51	38	172	161	12	174	12.6	5.6
SDC075E2	-							
SDC100E2								

13.3 Dimensions of servo drive

Note: Dimensions of the servo drive may be updated without prior notice. And 400W (incl.) and below models are without fan.

13.4 Standard specifications of servo motor

Motor model			L010	L020	L040	L075	L100		
Flange numb	ber	mm	□40	□6	0	□8	0		
Rated output	capacity	W	100	200	400	750	1000		
Rated torque	(Note 1)	Nm	0.32	0.64	1.27	2.4	3.2		
Maximum tor	rque	Nm	0.96	1.92	3.81	7.2	9.5		
Rated speed		rpm			3000				
Maximum sp	eed	rpm		60	000		5000		
Rated curren	ıt	А	0.85	1.7	2.8	5.8	5.5		
Maximum cu	rrent	А	2.7	5.2	9.0	18.5	18.2		
Rotor inertia	J (x10 ⁻⁴)	ka m2	0.0518	0.161	0.277	1.07	1.89		
(Note 2)		kg-mz	(0.0523)	(0.178)	(0.294)	(1.11)	(1.91)		
Power at continuous rated		kw/s	19.6	25.2	58.5	53.3	53.6		
Mounting alu size	minum plate	mm	250 x 250 x 6						
Insulation class				(CE(B) & UL(A))			
Insulation impedance				10	0MΩ @ DC50	0V			
Insulation str	ength			60	sec @ AC150	0V			
	- 1 1		(Optical) Single-turn resolution 24bit; multi-turn 16bit (65,536 Turn)						
Encoderreso	Diution		(Magnetic) Single-turn resolution 17bit; multi-turn 16bit (65,536 Turn)						
Motor structu	re(Note 3)		Full-	closed and Air	convection co	oling(IP rating	IP65)		
Vibration gra	de				V-15				
	Temperature		0°C∼40°C	(Non- freezing) / Storage: -1	5°C∼70°C (No	n- freezing)		
	Humidity	-	Below 80%RI	H (Non-condensir	ng) ,Storage: bel	ow 90%RH (Nor	n-condensing)		
Operation	Altitude	-			Below 1000m				
environment	Environment restrictions		Indoors (avo gases, fume	bid direct sunliges and dust.	ght), no corros	ive vapor, avo	id flammable		
	Vibration capacity		- 5G						
	Fd	mm	20	2	5	35	5		
Shaft allowable	Radial Ioading Fr	N	68.6	24	5	39	2		
load(Note 5)	Axial loading Fa	N	39.2	98	8	14	7		

13.4.1 SME series : Specification of Low Capacity Servo Motor

Motor model			L010	L020	L040	L075	L100
	Input voltage	V		[DC 24V ± 10%		
	Brake						
	holding	Nm	0.3	1.	3	2.5	3.2
	torque						
	Power	۱۸/	70	7	6	Q	10
Brake	consumption	vv	1.2	7.	0	0	10
spec	Current	۸	03	0.1	20	0.33	0.42
(Note4)	consumption	A	0.5	0.0	0.32		0.42
	Impedance	0	80	75	٨	70	57.6
	@20 °C	12	00	75	.4	12	07.0
	Release	me	40	6	n	60	60
	time	1115	40	60		00	00
	Close time	ms	20	4	0	40	40
Motor woich	t(Noto 2)	Ka	0.51	0.95	1.34	2.34	3.61
weigh	l(100 le 2)	ĸу	(0.73)	(1.31)	(1.71)	(3.07)	(4.4)

Note 1: For lifting axes or reciprocating loads, please make sure the average load ratio is not more than 75%. (Please refer to section 14.1 for S-T curve.).

Note 2: () for the rotor inertia and weight with electromagnetic brake.

Note 3: The motor IP65 protection test is for the motor body, excluding the output shaft and the connector itself.

Note 4: The electromagnetic brake is used for holding when the mechanism stops, and it cannot be used for braking during operation.

Note 5: The diagram of permissible load on output shaft is as below:

13.4.2 SM3 series : Specification of Low Capacity Servo Motor

	⁻ type		M010	M020	M040	H040	M075	H075	M100		
Flange numb	ber	mm	□40		□60			□80			
Rated power		W	100	200	400	400	750	750	1000		
Rated torque	Nm	0.318	0.64	1.27	1.27	2.39	2.39	3.18			
Maximum to	Maximum torque Nn			1.92	3.82	3.82	7.16	7.16	9.55		
Rated speed		rpm			3000						
Maximum sp	eed	rpm		6500	_	6000	6500 6000 5000				
Rated currer	nt	Α	0.85	1.5	2.8	2.8	5.0	5.0	5.0		
Maximum cu	rrent	Α	2.975	5.3	9.8	9.8	17.5	17.5	17.5		
Rotor inertia	<i>J</i> (x10 ⁻⁴)	ka m²	0.039	0.230	0.427	0.660	1.360	2.009	1.744		
(Note 2)		ку-ш-	(0.041)	(0.247)	(0.442)	(0.670)	(1.412)	(2.059)	(1.796)		
Power at c torque	ontinuous rated	kw/s	s 25.72 17.81 39.54 24.56 42.72 28.44						59.11		
Mounting a size	luminum plate	mm	250 x 250 x 6 (A6061)								
Insulation cla	iss		CE(B) / L	JL(A)							
Insulation res	sistance		100MΩ @ DC500V								
Insulation str	ength		60sec @ AC1500V								
Encoder reso	blution		(Optical) Single-turn resolution 22bit; multi-turn 16bit (65,536 Turn) (Magnetic) Single-turn resolution 20bit; multi-turn 16bit (65,536 Turn)								
Motor structu	re(Note 3)		Fully close	ed and Air o	convection	cooling(IP	rating IP6	7)			
Vibration gr	ade		V-15								
	temperature		0°C∼40°C	(Non- free	zing) / Sto	rage:-20℃	~80℃(No	n- freezing)		
	humidity		Below 80% Storage : I	%RH(Non- below 90%	condensing RH(Non-c	g) ondensing))				
	Altitude		Below 1,0	00m above	e sea level						
Operation environment	Environment restrictions		Indoors (avoid direct sunlight), no corrosive vapor , avoid flammable gases, fumes and dust.								
	magnetic field interference		<20mT (Note 6)								
	Vibration resistant		5G								

DDDD Motor type			M010	M020	M040	H040	M075	H075	M100	
	Fd	mm	20		25		35			
Axial allowable	radial loading Fr	Ν	68.6	245			392			
load(Note 5)	axial loading Fa	Ν	39.2	98			147			
	Input voltage	V		DC 24V ± 10%						
	Brake holding torque	Nm	0.32	1.5			3.2			
power consumption		W	6.1		7.6		10			
Brake specification	Current consumption	A	0.25		0.31		0.48			
(Note4)	impedance @20℃	Ω	94.4		76		50.1			
	Brake release time	ms	50	60		60				
	Brake close time	ms	40	20				40		
Motor weight(Note 2)		Kg	0.49 (0.70)	0.78 (1.19)	1.13 (1.55)	1.14 (1.55)	2.37 (3.18)	2.56 (3.38)	2.86 (3.66)	

Note 1: In the vertical lift or reciprocating mechanism application, please make sure the average load rate is below 75%. (refer to P. 292 for S-T curve)

Note 2: () is the rotor inertia and weight with electromagnetic brake.

Note 3: The motor IP65 protection test is for the motor body, excluding the output shaft and the connector itself.

Note 4: The electromagnetic brake is used for holding when the mechanism stops, and cannot be used for braking during operation.

Note 5: Output shaft allowable load diagram

13.5 Motor dimensions

13.5.1 Dimensions of 3000rpm motor

Model	Dimensions(mm)											
meder	WF	ψS	ψF	LA	LB	LF	LR	MH	LM	FC	HB	
SME-L010(B)	40	$\varphi 8 \ _{-0.009}^{0}$	$\varphi 30 \ _{-0.03}^{0}$	2.5	25	5.5	21.2	32	97.8 (132.5)	46	2-ψ4.5	
SME-L020(B)	60	$\varphi 14 \ _{-0.011}^{0}$	$\varphi 50^{0}_{-0.03}$	3	30	6.5	25.5	42	94.2 (129.2)	70	4-ψ5.8	
SME-L040(B)	00								114.2 (149.2)			
SME-L075(B)	90	<i>w</i> 19 ⁰	$arphi 70 \ ^{0}_{-0.03}$	3	40	7.5	35.3	52	119.2 (158.2)) 90	4-ψ6.6	
SME-L100(B)	80	Ψ ¹ -0.013							159.2 (203.5)			

LM (): length of model with brake.

Model		Dimensions(mm)									
initial of	WF	ψS	ψF	LA	LB	LF	LR	MH	LM	FC	HB
SM3-M010(B)	40	Ø8 ⁰ -0.009	Ø30 ⁰ -0.021	2.5 ±0.5	25 ±0.5	5	22	41.5	95 (122)	46	4-ø4.5
SM3-M020(B)	60	Ø14 ⁰ -0.011	Ø50 ⁰ _{-0.025}	3 ±0.5	30 ±0.5	7.5	26.5	47	74 (107)	70	4-ø5.5
SM3-M040(B)	60	Ø14 ⁰ -0.011	Ø50 ⁰ _{-0.025}	3 ±0.5	30 ±0.5	7.5	26.5	47	93 (126)	70	4-ø5.5
SM3-H040(B)	60	Ø14 ⁰ -0.011	Ø50 ⁰ _{-0.025}	3 ±0.5	30 ±0.5	7.5	26.5	47	93 (126)	70	4-ø5.5
SM3-M075(B)	80	Ø19 ⁰ -0.013	Ø70 ⁰ _{-0.03}	3 ±0.5	35 ±0.5	8	31.5	55.5	108.5 (147.5)	90	4-ø6.6
SM3-H075(B)	80	Ø19 ⁰ _{-0.013}	Ø70 ⁰ _{-0.03}	3 ±0.5	35 ±0.5	8	31.5	55.5	113 (152)	90	4-ø6.6
SM3-M100(B)	80	Ø19 ⁰ -0.013	Ø70 ⁰ _{-0.03}	3 ±0.5	35 ±0.5	8	31.5	55.5	123.5 (162.5)	90	4-ø6.6

Į

HΣ

111

LM

LM ():Length of model with brake

13.5.2 Dimensions of 2000 RPM motor

There is no 2000 rpm motor in SDC series currently.

13.5.3 Dimensions of servo motor keyway

D type keyway applicable model: L010(B)

General keyway

Madal	Dimensions							
Woder	QL	QK	W	Т	U	Y		
SME-L020(B) \ SME-L040(B)	3	20	5 ⁰ _{-0.03}	5	3	M4x depth 15		
SME-L075(B) \ SME-L100(B)	5	25	$6 \ ^{0}_{-0.03}$	6	3.5	M5x depth 20		

	Dimensions(mm)									
Model	W	Т	KW	KH	LK	TP				
SM3-M010(B)	3 ⁰ _{-0.03}	3 ⁰ _{-0.03}	3 ⁰ _{-0.03}	6.2 ⁰ _{-0.1}	15.5	M3 x depth 6				
SM3-M020(B) SM3-M040(B) SM3-H040(B)	5 ⁰ _{-0.03}	5 ⁰ _{-0.03}	5 ⁰ _{-0.03}	11 ⁰ _{-0.1}	20	M4 x depth15				
SM3-M075(B) SM3-H075(B) SM3-M100(B)	6 ⁰ _{-0.03}	6 ⁰ _{-0.03}	6 ⁰ _{-0.03}	15.5 ⁰ _{-0.1}	25	M5 x depth 20				

13.6 Electromagnetic interference filter (EMI Filter)

To comply with EMI directive of EN specifications, it is recommended to use the following filters:

Servo drive	Recommended filter			
SDC-010E2				
SDC-020E2	NF312C5/05			
SDC-040E2	NF312C10/05			
SDC-075E2	NE342020/05			
SDC-100E2	NF312C20/05			

- ★ Filter is optional purchase item.
- ★ The filter installation should be decided after considering whether there is any EMI phenomenon in site.

The diagram of the drive connected to the three-phase power supply after connecting the EMI filter can be seen in the following figure:

★ Ground the EMI Filter.

13.7 EMI prevention countermeasures

The following diagram shows the recommended wiring of the servo drive on the distribution panel.

Figure 1: Recommended wiring diagram

The selection of motor power cable and the installation of related accessories are the key to electromagnetic interference. To effectively reduce the noise interference, the following items should be noted when wiring on the distribution panel.

1. The EMI filter and servo drive should be installed on the same metal plate, and the wiring between them should be shortened as much as possible.

2. The servo drive and metal casing of EMI filter installed in the metal plane of the disk must be fixed on the metal plane, and the two contact surface of the metal plane should be as good as possible (the isolation paint needs to be removed).

3.Use power cable with isolation net for the motor power cable, and double isolation net is preferred.

4. The isolation net at both ends of the motor power cable must be grounded with the largest contact area (U-type metal piping clamps).

5.U-type metal piping clamps are screwed on the metal plane of the distribution panel (the isolation paint needs to be removed) to ensure good contact, please see Figure 2 below.

6.The distribution box and the distribution door should have good conductivity, and the thick grounding wire or metal isolation net should be assembled between frame and door to avoid noise interference.

7.The magnet buckle must be wound more than one turn on the power wiring (except the ground wire), and should be as close as possible to the servo drive to prevent common mode noise interference.

8.Power lines and I/O lines should be far away from each other and should not wiring in parallel direction.

9.For the metal parts of the motor-configured equipment, please use a thick ground wire or metal isolation net to connect the ground terminal.

Figure 2 U-type metal piping clamps
14.Features

14.1 Motor T-N curve/S-T curve

Insufficient voltage will reduce the motor feature of three-phase 220V power supply.

[SME-L010] 100% 0.96 Short duration 90% running range Load ratio (%) Torque (N-m) 0.64 0.32 Continuous running range 0.16 0 0 1000 2000 3000 4000 5000 6000 10 20 30 Surrounding air temperature (°C) 0 40 Speed (rpm)

[SME-L020]

[SME-L075]

[SME-L100]

[SM3-M010]

[SM3-M020]

[SM3-M040]

[SM3-H040]

[SM3-M075]

[SM3-H075]

[SM3-M100]

★ This feature is applicable for single-phase 200~240V power supply.

14.2 Overload protection feature

Overload protection is to prevent the servo motor from overload operation.

The causes of overload can be summarized as follows:

- (1). Excessive inertia ratio.
- (2). The acceleration and deceleration time setting is too small during loading.
- (3). The motor torque exceeds the rated range and the operating time is too long.
- (4). Large servo gain setting causes resonance and the motor keeps running.
- (5). Motor power cable and encoder cable are wired incorrectly.

If the motor torque exceeds the rated range, you can refer to the load ratio and operating time graphs as follows:

Operating time is 2.46 seconds at 300% load.

Operating time is 3.33 seconds at 300% load

L100 / M100 (80 frame) Overload protection pattern

Operating time is 5.51 seconds at 300% load.

15.Absolute Servo System

The absolute system includes a servo drive, an absolute servo motor, and an absolute encoder cable (with battery box). Instead of storing data in the PLC controller, the absolute position detection system detects the absolute position of the machine and stores the data with battery power. Therefore, once the origin point is set during installation, it is easy to resume operation even in the event of a power failure or malfunction.

If the absolute system parameter is enabled, the absolute servo motor is needed, and if the incremental servo motor is used, the alarm AL.24 will occur.

The description of absolute motor model is as follows:

-M: Absolute servo motor

	When [Absolute Position Loss] or [Absolute Position Overflow] occurs, it is
	necessary to set the origin point again.
	Please put the battery into the battery box to prevent unexpected factors such
Note	as battery short-circuiting.
	When using an absolute servo motor, make sure that the motor speed is less
	than 50 rpm at power-on.
	Do not exceed 50rpm in battery mode when the drive is powered off.

Keynote	The absolute position disappears when the battery is removed, be sure to set
	the origin again before operation.

Restricted items:

Absolute position system is not applicable in the following conditions.

- (1) Speed control mode and torque control mode.
- (2) Switching mode.
- (3) Rotary axis, infinite path positioning.
- (4) Chang the E-Gear ratio after setting the origin.
- (5) Alarm code output is used.

How to replace batteries:

(1) When the drive displays the alarm AL.2D for under voltage, please replace the battery immediately to avoid data loss.

(2) When the battery voltage is less than 2.45V, the motor position data has been lost, and it is necessary to replace the battery and start the homing program again.

☆☆☆Attention!!

It is recommended to replace the battery when the drive is powered on to avoid absolute position data loss.

(1).Install the absolute motor and battery.

(2).Set parameter PA28 to 1 to enable the absolute system, and restart the power.

(3). The alarm [AL.2A Absolute encoder error 1] occurs after power on. You can cycle the power to clear this alarm.

(4).The alarm [AL.2C Absolute encoder error 3] occurs after power on, you need to <u>reset the</u> <u>origin of absolute system</u> to clear the alarm.

Set parameter PA29 = 1 to finish coordinate initialization.

Cautions

In the absolute system, the position movement has certain restrictions. If the number of motor revolutions exceeds the range of $-32768 \sim +32767$ revolutions, alarm AL.29 will occur.

Calculation of pulse number

The maximum countable number of motor revolutions ranges is from -32768 to +32767. If the number of revolutions is out of this range, an overflow alarm (AL.29) will occur, and according to the model of the motor encoder, the pulse number of a single revolution of the motor is 131072 (17bit).

The revolution number and pulse number of absolute servo system can be read through the communication or DI/DO, the total pulse value is calculated as follows.

Total pulse number = r(revolution number) x 131072 + pulse number (0~131071)

If the motor has made 10 revolutions and 50,000 pulses, according to the above formula, the total pulse value is as follows:

Total pulse number = $10 \times 131072 + 50000$

= 1360720(pulse)

Reading the absolute position by communication

It is generally recommended to use the parameters in the following table to read the pulses number and revolutions number of the absolute encoder. (Please refer to Chapter 9 for detailed description)

	Address	NO.	Parameters description	Data type
	0x201E	PA30	Update encoder absolute position parameter	UDINT
	0.2015	DA 24	Absolute coordinate system status	
0x201F PA31		PAJI	(read-only, not valid for writing)	UDINT
			Encoder absolute position (pulse number within	
0x2020	0x2020	20 PA32	single turn)	UDINT
			(read only, not valid for writing)	
0x2021		DADD	Encoder absolute position (number of revolutions)	
		DX2021 PA33	(read only, not valid for writing)	UDINT

When setting PA30 by communication, the current encoder status and the absolute motor position will be updated. If PA30 = 1, the drive does not clear the deviation when reading the position value, if PA30 = 2, the deviation will be cleared at the same time when reading the position value.

The servo motor will make small position correction even in the stationary state. To avoid the absolute coordinate values are different from the actual position of the motor, you can set PA30 to clear the position deviation and read the coordinates at the same time. When the encoder status and the absolute position of the motor are updated, the drive will automatically return PA30 to 0, which means the upper controller can read the data.

If the encoder status shows "Absolute Position loss" or "Absolute revolution Overflows", the absolute position data is invalid. In this case, you must perform the coordinate initialization or homing again.

Absolute Battery Specifications

Precautions:

To avoid damage or danger, please read and observe the following precautions, use batteries of the specified specifications.

1. The installation environment must be free of moisture, corrosive and flammable gas.

2.Correctly place the battery into the battery box to avoid short-circuiting.

3.Do not short-circuit the positive and negative electrodes of the battery, and do not install the battery in reverse direction.

1.Do not expose the battery to high temperatures above 100°C (212°F) or to flames, as it may result in fire and explosion.

2. The battery is a single-use disposable battery, do not recharge the battery. Otherwise it may cause an explosion.

3.Do not directly weld on the surface of the battery.

Battery specifications

	Lithium-thionyl chloride		
Namo			
Name			
	battery		
Туре	ER6C		
Shihlin model name:	SDH-BAT		
Standard voltage	3.6 V		
Standard capacity	1800 mAh		
Continuous discharge current	100 µA		
Dimension(D x H)	14.5 x 51 mm		
Weight	15 g		
Operating temperature	-55°C~85°C (-67°F~185°F)		

Battery life

The above graph shows the battery life curve provided by the battery manufacturer. According to the curve shown above, if the consumption current of the absolute encoder is 90μ A, the expected battery life is around 20,000hrs, which is equivalent to 2.3 years.

16.Appendix

16.1 Accessories

ltem	Name	Shihlin model name	Length (mm)
	Low inertia (100W~1kW) encoder connector	SDH-ENCNL	
Encoder connector (CN2)	Middle & High inertia (100W~ 1kW) encoder junction connector (lead out in direction of motor shaft)	SM3-ENF	
(0112)	Middle & High inertia (100W~ 1kW) encoder junction connector (lead out in opposite direction of motor shaft)	SM3-ENR	
	Low inertia (100W~1kW) encoder cable 2meters	SDH-ENL-2M-L/H	2000±100
	Low inertia (100W~1kW) encoder cable 5meters	SDH-ENL-5M-L/H	5000±100
	Low inertia (100W~1kW) encoder cable 10meters	SDH-ENL-10M-L/H	10000±100
	Middle & High inertia (100W~ 1kW) Single turn encoder cable 2meters (lead out in direction of motor shaft)	SM3-ENFS-2M-L/H	2000±100
	Middle & High inertia (100W~ 1kW) Single turn encoder cable 5meters (lead out in direction of motor shaft)	SM3-ENFS-5M-L/H	5000±100
Encoder	Middle & High inertia (100W~ 1kW) Single turn encoder cable 10meters (lead out in direction of motor shaft)	SM3-ENFS-10M-L/H	10000±100
cable	Middle & High inertia (100W~ 1kW) Multiple turn encoder cable 2meters (lead out in direction of motor shaft)	SM3-ENFM-2M-L/H	2000±100
	Middle & High inertia (100W~ 1kW) Multiple turn encoder cable 5meters (lead out in direction of motor shaft)	SM3-ENFM-5M-L/H	5000±100
	Middle & High inertia (100W~ 1kW) Multiple turn encoder cable 10meters (lead out in direction of motor shaft)	SM3-ENFM-10M-L/H	10000±100
	Middle & High inertia (100W~ 1kW) Single turn encoder cable 2meters (lead out in opposite direction of motor shaft)	SM3-ENRS-2M-L/H	2000±100
	Middle & High inertia (100W~ 1kW) Single turn encoder cable 5meters (lead out in opposite direction of motor shaft)	SM3-ENRS-5M-L/H	5000±100

	Middle & High inertia (100W~ 1kW) Single turn encoder cable 10meters (lead out in opposite direction of motor shaft)	SM3-ENRS-10M-L/H	10000±100
	Middle & High inertia (100W~ 1kW) Multiple turn encoder cable 2meters (lead out in opposite direction of motor shaft)	SM3-ENRM-2M-L/H	2000±100
Encoder cable	Middle & High inertia (100W~ 1kW) Multiple turn encoder cable 5meters (lead out in opposite direction of motor shaft)	SM3-ENRM-5M-L/H	5000±100
	Middle & High inertia (100W~ 1kW) Multiple turn encoder cable 10meters (lead out in opposite direction of motor shaft)	SM3-ENRM-10M-L/H	10000±100
	Low inertia (100W~1kW)power connector without brake	SDA-PWCNL1	
	Low inertia (100W~1kW)power connector with brake	SDA-PWCNL2	
	Middle & High inertia (100W~ 1kW) power junction connector without brake (lead out in direction of motor shaft)	SM3-PWF	
Power connector	Middle & High inertia (100W~ 1kW) power junction connector with brake (lead out in direction of motor shaft)	SM3-PWFB	
	Middle & High inertia (100W~ 1kW) power junction connector without brake (lead out in opposite direction of motor shaft)	SM3-PWR	
	Middle & High inertia (100W~ 1kW) power junction connector with brake (lead out in opposite direction of motor shaft)	SM3-PWRB	
	Low inertia (100W~1kW) power cable 1(without brake)	SDA-PWCNL1-2M-L/H	2000±100
	Low inertia (100W~1kW) power cable 2(without brake)	SDA-PWCNL1-5M-L/H	5000±100
Power cable	Low inertia (100W~1kW) power cable 3(without brake)	SDA-PWCNL1-10M-L/H	10000±100
	Middle & High inertia (100W~ 1kW) power junction cable 1 without brake (lead out in direction of motor shaft)	SM3-PWF-2M-L/M	2000±100
	Middle & High inertia (100W~ 1kW) power junction cable 2 without brake (lead out in direction of motor shaft)	SM3-PWF-5M-L/M	5000±100
	Middle & High inertia (100W~ 1kW) power junction cable 3 without brake (lead out in direction of motor shaft)	SM3-PWF-10M-L/M	10000±100

	Middle & High inertia (100W~ 1kW) power junction cable 1 without brake (lead out in opposite direction of motor shaft)	SM3-PWR-2M-L/M	2000±100
	Middle & High inertia (100W~ 1kW) power junction cable 2 without brake (lead out in opposite direction of motor shaft)	SM3-PWR-5M-L/M	5000±100
	Middle & High inertia (100W~ 1kW) power junction cable 3 without brake (lead out in opposite direction of motor shaft)	SM3-PWR-10M-L/M	10000±100
Power cable	Low inertia (100W~1kW) power cable 1(with brake)	SDA-PWCNL2-2M-L/H	2000±100
	Low inertia (100W~1kW) power cable 2(with brake)	SDA-PWCNL2-5M-L/H	5000±100
	Low inertia (100W~1kW) power cable 3(with brake)	SDA-PWCNL2-10M-L/H	10000±100
	Middle & High inertia (100W~ 1kW) power junction cable 1 with brake (lead out in direction of motor shaft)	SM3-PWFB-2M-L/M	2000±100
	Middle & High inertia (100W~ 1kW) power junction cable 2 with brake (lead out in direction of motor shaft)	SM3-PWFB-5M-L/M	5000±100
	Middle & High inertia (100W~ 1kW) power junction cable 3 with brake (lead out in direction of motor shaft)	SM3-PWFB-10M-L/M	10000±100
	Middle & High inertia (100W~ 1kW) power junction cable 1 with brake (lead out in opposite direction of motor shaft)	SM3-PWRB-2M-L/M	2000±100
	Middle & High inertia (100W~ 1kW) power junction cable 2 with brake (lead out in opposite direction of motor shaft)	SM3-PWRB-5M-L/M	5000±100
	Middle & High inertia (100W~ 1kW) power junction cable 3 with brake (lead out in opposite direction of motor shaft)	SM3-PWRB-10M-L/M	10000±100
Communicati on cable(CN4)	USB communication cable for drive and computer	SDA-USB3M	3000
Communicati	Data transmission cable 1.5meters	SNKCBL1R5GTN2	1500
on cable	Data transmission cable 3 meters	SNKCBL3GTN2	3000
CN3/CN3L)	Data transmission cable 5 meters	SNKCBL5GTN2	5000
	Data transmission cable 10 meters	SNKCBL10GTN2	10000

I/O	I/O connector	SDA-CN1	
connector	I/O cable	SDA-TBL05M	500±10
(CN1)	I/O cable	SDA-TB1M	1000±10
	I/O cable	SDA-TBL2M	2000±10
	I/O terminal block	SDA-TBL50	
Battery	Absolute encoder battery set	SDH-BAT-SET	
set	Absolute encoder battery	SDH-BAT	
(CN5)			

Encoder connector

Shihlin part number: SDH-ENL (for SME 100W~1KW motor)

Shihlin part number: SM3-ENF、SM3-ENR (for SM3 100W~1KW motor)

Encoder cable

Low inertia encoder cable:(for SME 100W~1KW motor)

Medium/high inertia encoder cable:(for SM3 100W~1KW motor)

Power connector

Shihlin part number: SDA-PWCNL1 (SME series 100W~1kW without brake) SDA-PWCNL2 (SME series100W~1kW with brake)

Shihlin part number: SDA-PWCNL1 (SM3 series 100W~1kW without brake) SDA-PWCNL2 (SM3 series 100W~1kW with brake)

Power cable

Low inertia power cable: (SME series 100W~750W)

Mediym and high inertia power cable: (SM3 series 100W~1KW)

✤ USB communication cable between drive and computer

Shihlin part number: SDA-USB3M

- I/O connector terminal
 Shihlin part number: SDC-CN1
- I/O connector terminal cables
 Shihlin part number: SDC-TBL05M, SDC-TBL1M, SDC-TBL2M
- I/O connector terminal block
 Shihlin part number: SDC-TB15

Absolute encoder accessories:

Absolute encoder battery pack	Absolute encoder battery
Shihlin part number: SDH-BAT-SET	Shihlin part number: SDH-BAT

16.2 Regenerative resistor

	Built-in regenerative resistor specification				
Drive model	Resistance value (Ω)	Capacity (W)	PA10 Regenerative resistance value	PA11 Regenerative resistance capacity	
SDC-010E2		Without built in regenerative resistor			
SDC-020E2	- Without built-in regenerative resistor				
SDC-040E200	100 20 100		100	20	
SDC-075E200	40 40		40	40	
SDC-100E2	40	40	40	40	

	Specific	cation of externa	Il resistor(reco	ommended)	Resistor part number
Drive model	Min allowance resistance value (Ω)	Recommended capacity (W)	PA10 Regenerative resistance value	PA11 Regenerative resistance capacity	
SDC-010E2	100	300	100	300	ABR-300W100
SDC-020E2	100	300	100	300	ABR-300W100
SDC-040E2	100	300	100	300	ABR-300W100
SDC-075E2	40	500	40	500	ABR-500W40
SDC-100E2	40	500	40	500	ABR-500W40

16.3 Compliance with global standards

16.3.1 Safety description

Please read this manual carefully to ensure proper use before installing this equipment. This section describes safety regulations for operation of the equipment.

Wiring or inspections should be performed after the power has been turned off for more than 20 minutes, the charging indicator light has been turned off and a voltage test is done to check the residue voltage, otherwise it may cause electric shock.

16.3.2 Professional technicians

Only the professional technician who has received professional training can install the SDC servo drive.

16.3.3 Compliance with standards

(1) Safety regulations

SDC servo drives comply with IEC/EN61800-5-1.

(2) EU compliance

SDC servo comply with EMC directive (2014/30/EU) and low voltage directive (2014/35/EU).

(3) Compliance with U.S./Canada regulations

This servo drives are designed to comply with UL 61800-5-1 and CSA C22.2 No. 274-17.

(a) Installation

The minimum size of the distribution box is 200% of the volume of the SDC servo drive. Fan ventilation should be considered to keep the ambient temperature below 55°C. Only copper wires can be used for wiring, and the drive should be installed in a metal distribution box.

(b) Overload protection feature

The SDC servo drive has overload protection feature. (It is specified based on 120% of the rated current of the servo drive (full load current)).

(c) Motor over-temperature protection

There is no temperature sensor inside the motor, and the SDC series does not provide over-temperature protection.

(d) Capacitor discharge

Do not touch the servo body and terminals immediately after the power is turned off, it takes 20 minutes for the capacitor to discharge.

(e) About wiring protection

When installing the equipment in the U.S.A., branch circuit protection is in accordance with the National Electrical Code and local codes. When installing equipment in Canada, branch circuit protection is based on the Canadian Electrical Code and provincial codes.

16.3.4 Usage tips

The equipment must comply with the specifications (voltage, temperature.... etc., please refer to section 13.1 for details).

(1) Power cable

Refer to section 3.1.6 for the detailed power cable list.

Note 1 When connecting to the terminal block, use the screws supplied with the terminal block.

Note 2. The letters in the table indicate the crimping tool. Refer to the recommended crimping terminal table for crimping terminals and the appropriate tools.

Note 3. Cable size depends on the specifications of the connected servo motor.

(2) Fixed terminal block torque: crimp terminals must comply with UL specifications and must use insulation sleeve to prevent direct contact.

Drive	Recommended torque(Nt-m)				
Drive	L1, L2	U, V, W	P, C, N	PE	
SDC-010E2					
SDC-020E2					
SDC-040E2	0.8	0.8	0.8	1.4	
SDC-075E2	-				
SDC-100E2					

(3) Examples of non-fuse circuit breaker selection:

Drive	Current limiting circuit breaker(UL certified)	Example
SDC-010E2	240 \/ 5 A	
SDC-020E2	240 V, 5 A	NF30-3VFU 3A
SDC-040E2	240 V, 10 A	NF50-SVFU 3P 10A
SDC-075E2	240 \/ 45 A	
SDC-100E2	240 V, ISA	NF50-3VFU 3P 15A

In order to comply with the requirements of the North American Safety Standard UL61800-5-1, you must connect a circuit breaker at the input side to prevent accidents caused by short circuits in the internal circuit. Install adequate branch circuit short-circuit protection in accordance with applicable codes and this manual. This product is applicable for the circuits which the rated fusing capacity is less than 5000A and the maximum voltage is 240Vac.

16.3.5 Basic inspection and maintenance

Basic inspection

It is recommended to do the following inspections regularly. Before inspection, please check carefully whether the power has been turned off and whether the charging indicator is off:

- Please tighten the screws on the terminal block, drive installation part, servo motor and the connection of the mechanism if there is any loosening.
- Avoid placing the controller in a place where harmful gases exist.
- Avoid placing conductive objects next to the drive and drive wiring.
- Avoid excessive length of bare wires, and avoid to use damaged or broken wires.
- Wiring terminals should be well insulated.
- Make sure the external AC220V voltage is correct.
- Make sure the control operation switch is OFF.
- Check if there are any errors in the wiring of the self-made power cable and encoder cable.

<u>Maintenance</u>

Please do not disassemble the servo drive when performing maintenance. Please follow below instruction for regular maintenance:

- Wipe the servo drive and servo motor regularly to avoid dust.
- Do not operate the servo in a harsh environment for a long time.
- Ventilation of the servo drive should be kept clean to avoid dust accumulation.

Parts service life

The service life of the parts varies according to the operating environment. It needs to be replaced immediately if any abnormality occurs, and you can contact Shihlin distributors for parts replacement.

Parts name	Approximate service life	Description
Relay	100,000 times	The power capacity affects its service life, its accumulative number of switching is about 100,000 times.
Cooling fan	10,000~30,000 hours (2~3 years)	Continuous operation or placing the servo drive in a place with harmful gas will shorten the service life of the fan. Normally the lifetime is about 2 to 3 years. However, if the fan runs with abnormal noise, it needs to be replaced.
Rectified capacitor	If the rectified capacitor is affected by the ripple current, its features will be worsened. The service life of the capacitor is affected by the ambient temperature and conditions. If the serve is used in an air-conditioning environment, the service life is about 10 years.	

The service life of the parts are as follows:

16.4 Manual version

Manual version: V1.02

Released month: Feb 2024

Release date	Version	Revision contents
2022/12/01	V1.00	Initial release.
2023/06/27	V1.01	1.Add parameter PB57.
		2.Add parameter PD37.
2024/02/01	V1.02	1.Added SM3 series motor specifications